Correlation of the ADC values assessed by diffusion-weighted MRI and 18F–FDG PET/CT SUV in patients with lung cancer

Chiang Jeng Tyng1, Marcos Duarte Guimarães1, Almir Galvão Vieira Bitencourt1, Luiz Carlos Mattos dos Santos1, Paula Nicole Vieira Pinto Barbosa1, Charles Edouard Zurstrassen1, Eduardo Nóbrega Pereira1, Jefferson Luiz Gross2, Rubens Chojniak1
1Imaging Department – A.C. Camargo Cancer Center, São Paulo, Brazil
2Thoracic Department – A.C. Camargo Cancer Center, São Paulo, Brazil

Tóm tắt

Diffusion-weighted magnetic resonance imaging (DW-MRI) provides information on the cellularity and movement of water molecules in tissues and 18F–fluorodeoxyglucose (18F–FDG) positron emission tomography/computed tomography (18F–FDG PET/CT) assesses cellular glucose metabolism, however both variables are related to tumour aggressiveness. The aim of this study is to investigate the potential correlation of the apparent diffusion coefficient (ADC) assessed by diffusion-weighted MRI (DWI) and glucose metabolism determined by the standardized uptake value (SUV) calculated from 18F–FDG PET/CT data in non-small cell lung cancer (NSCLC) with the occurrence of metastasis to the lymph nodes. 18F–FDG PET/CT and DWI (TR/TE, 1800/93 ms; b-values, 0 and 600 s/mm2) were performed in 37 consecutive patients with histologically verified NSCLC. SUVmax was calculated based on the PET-CT data. The minimum ADC (ADCmin) was determined by placing a region-of-interest (ROI) covering the entire tumou. Results of 18F–FDG PET/CT and DWI were compared on a per-patient basis. Pearson’s correlation coefficient was used for statistical analysis. Correlation analysis of the ADCmin and SUVmax revealed that the inverse correlation was good for all the masses (p < 0.001) and the lymph nodes (p < 0.001) for each histological subtype, for both adenocarcinomas (p < 0.001) lymph nodes (p = 0.005) and squamous cell carcinomas (p < 0.001). No significant correlation was found in the comparison of the ADCmin and SUVmax of the lymph nodes for squamous cell carcinomas (p = 0.066). This study verified the relationship between the SUVmax and the ADCmin in NSCLC. The significant inverse correlation of these two quantitative imaging approaches highlights the association between metabolic activity and tumour cellularity. Therefore, DWI with ADC measurement might represent a new biomarker in NSCLC.

Từ khóa


Tài liệu tham khảo

McMahon PM, Kong CY, Johnson BE, Weinstein MC, Weeks JC, Kuntz KM, et al. Estimating long-term effectiveness of lung cancer screening in the Mayo CT screening study. Radiology. 2008;248(1):278–87. De Wever W, Stroobants S, Coolen J, Verschakelen JA. Integrated PET/CT in the staging of nonsmall cell lung cancer: technical aspects and clinical integration. Eur Respir J. 2009;33(1):201–12. Kligerman S, Digumarthy S. Staging of non-small cell lung cancer using integrated PET/CT. AJR. 2009;193(5):1203–11. Nahmias C, Hanna WT, Wahl LM, Long MJ, Hubner KF, Townsend DW. Time course of early response to chemotherapy in non-small cell lung cancer patients with 18F-FDG PET/CT. J Nucl Med. 2007;48(5):744–51. Borst GR, Belderbos JSA, Boellaard R, Comans EFI, Jaeger K, Lammertsma AA, et al. Standardised FDG uptake: a prognostic factor for inoperable non-small cell lung cancer. Eur J Cancer. 2005;41(11):1533–41. Regier M, Kandel S, Kaul MG, Hoffmann B, Ittrich H, Bansmann PM, et al. Detection of small pulmonary nodules in high-field MR at 3 T: evaluation of different pulse sequences using porcine lung explants. Eur Radiol. 2007;17(5):1341–51. Matoba M, Tonami H, Kondou T, Yokota H, Higashi K, Toga H, et al. Lung carcinoma: diffusion-weighted mr imaging--preliminary evaluation with apparent diffusion coefficient. Radiology. 2007;243(2):570–7. Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med. 2004;22(4):275–82. Theilmann RJ, Borders R, Trouard TP, Xia G, Outwater E, Ranger-Moore J, et al. Changes in water mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy. Neoplasia. 2004;6(6):831–7. Regier M, Derlin T, Schwarz D, Laqmani A, Henes FO, Groth M, et al. Diffusion weighted MRI and 18F-FDG PET/CT in non-small cell lung cancer (NSCLC): does the apparent diffusion coefficient (ADC) correlate with tracer uptake (SUV)? Eur J Radiol. 2012;81(10):2913–8. Gourtsoyianni S, Papanikolaou N, Yarmenitis S, Maris T, Karantanas A, Gourtsoyiannis N. Respiratory gated diffusion-weighted imaging of the liver: value of apparent diffusion coefficient measurements in the differentiation between most commonly encountered benign and malignant focal liver lesions. Eur Radiol. 2008;18(3):486–92. https://doi.org/10.1007/s00330-007-0798-4 Pauls S, Schmidt SA, Juchems MS, Klass O, Luster M, Reske SN, et al. Diffusion-weighted MR imaging in comparison to integrated [18F]-FDG PET/CT for N-staging in patients with lung cancer. Eur J Radiol. 2012;81(1):178–82. Dudeck O, Zeile M, Pink D, Pech M, Tunn PU, Reichardt P, et al. Diffusion-weighted magnetic resonance imaging allows monitoring of anticancer treatment effects in patients with soft-tissue sarcomas. J Magn Reson Imaging. 2008;27(5):1109–13. Palumbo B, Angotti F, Marano GD. Relationship between PET-FDG and MRI apparent diffusion coefficients in brain tumors. J Nucl Med Mol Imaging. 2009;53(1):17–22. Cerfolio RJ, Bryant AS, Ohja B, Bartolucci AA. The maximum standardized uptake values on positron emission tomography of a non-small cell lung cancer predict stage, recurrence, and survival. J Thorac Cardiovasc Surg. 2005;130(1):151–9. Gould MK, Kuschner WG, Rydzak CE, Maclean CC, Demas AN, Shigemitsu H, et al. Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann Intern Med. 2003;139(11):879–92. Roberts PF, Follette DM, Von Haag D, Park JA, Valk PE, Pounds TR, et al. Factors associated with false-positive staging of lung cancer by positron emission tomography. Ann Thorar Surg. 2000;70(4):1154. -9-60 Usuda K, Zhao XT, Sagawa M, Matoba M, Kuginuki Y, Taniguchi M, et al. Diffusion-weighted imaging is superior to positron emission tomography in the detection and nodal assessment of lung cancers. Ann Thorar Surg. 2011;91(6):1689–95. Herneth AM, Guccione S, Bednarski M. Apparent diffusion coefficient: a quantitative parameter for in vivo tumor characterization. Eur J Radiol. 2003;45(3):208–13.