Correlation of BRAF mutation and SUVmax levels in thyroid cancer patients incidentally detected in 18F-fluorodeoxyglucose positron emission tomography

Endocrine - Tập 55 Số 1 - Trang 215-222 - 2017
Ayşenur Özderya1, Şule Temizkan1, Aylin Gül2, Şule Özuğur3, Mehmet Sargın4, Kadriye Aydın1
1Department of Endocrinology and Metabolism, Kartal Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey
2Department of Pathology, Kartal Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey
3Department of Nuclear Medicine, Kartal Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey
4Department of Family Medicine, Kartal Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

L. Duntas, B.M. Grab-Duntas, Risk and prognostic factors for differentiated thyroid cancer. Hell. J. Nucl. Med. 3, 156–162 (2006)

K. Pak, S.J. Kim, I.J. Kim, B.H. Kim, S.S. Kim, Y.K. Jeon, The role of 18F-fluorodeoxyglucose positron emission tomography in differentiated thyroid cancer before surgery. Endocr. Relat. Cancer 4, 203–213 (2013)

T. Berghmans, M. Dusart, M. Paesmans, C. Hossein-Foucher, I. Buvat, C. Castaigne, A. Scherpereel, C. Mascaux, M. Moreau, M. Roelandts, S. Alard, A.P. Meert, E.F. Patz Jr, J.J. Lafitte, J.P. Sculier, Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J. Thorac. Oncol. 3, 6–12 (2008)

S.H. Son, S.M. Kang, S.Y. Jeong, S.W. Lee, S.J. Lee, J. Lee, B.C. Ahn, Prognostic Value of Volumetric Parameters Measured by Pretreatment 18F FDG PET/CT in Patients With Cutaneous Malignant Melanoma. Clin. Nucl. Med. 41, 266–273 (2016)

Y.J. Li, Y.L. Dai, Y.S. Cheng, W.B. Zhang, C.Q. Tu, Positron emission tomography (18)F- fluorodeoxyglucose uptake and prognosis in patients with bone and soft tissue sarcoma: A meta-analysis. Eur. J. Surg. Oncol. 3, pii:S0748–pii:S7983 (2016). (16)30117-2

J.E. Jo, J.Y. Kim, S.H. Lee, S. Kim, T. Kang, Preoperative 18F-FDG PET/CT predicts disease-free survival in patients with primary invasive ductal breast cancer. Acta. Radiol. 56, 1463–1470 (2015)

B.S. Kim, S.J. Kim, I.J. Kim, K. Pak, K. Kim, Factors associated with positive F-18 flurodeoxyglucose positron emission tomography before thyroidectomy in patients with papillary thyroid carcinoma. Thyroid 22, 725–729 (2012)

H. Kaida, Y. Hiromatsu, S. Kurata, A. Kawahara, S. Hattori, T. Taira, M. Kobayashi, M. Uchida, K. Yamada, H. Mihashi, H. Umeno, M. Kage, T. Nakashima, N. Hayabuchi, M. Ishibashi, Relationship between clinicopathological factors and fluorine-18-fluorodeoxyglucose uptake in patients with papillary thyroid cancer. Nucl. Med. Commun. 32, 690–698 (2011)

C. Are, J.F. Hsu, R.A. Ghossein, H. Schoder, J.P. Shah, A.R. Shaha, Histological aggressiveness of fluorodeoxyglucose positron-emission tomogram (FDG-PET)-detected incidental thyroid carcinomas. Ann. Surg. Oncol. 14, 3210–3215 (2007)

B.R. Haugen, E.K. Alexander, K.C. Bible, G.M. Doherty, S.J. Mandel, Y.E. Nikiforov, F. Pacini, G.W. Randolph, A.M. Sawka, M. Schlumberger, K.G. Schuff, S.I. Sherman, J.A. Sosa, D.L. Steward, R.M. Tuttle, L. Wartofsky, American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26, 1–133 (2016)

M. Xing, BRAF mutation in thyroid cancer. Endocr. Relat. Cancer 12, 245–262 (2005)

K. Pak, S. Suh, S.J. Kim, I.J. Kim, Prognostic value of genetic mutations in thyroid cancer: a meta-analysis. Thyroid 25, 63–70 (2015)

M.N. Nikiforova, E.T. Kimura, M. Gandhi, P.W. Biddinger, J.A. Knauf, F. Basolo, Z. Zhu, R. Giannini, G. Salvatore, A. Fusco, M. Santoro, J.A. Fagin, Y.E. Nikiforov, BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J. Clin. Endocrinol. Metab. 88, 5399–5404 (2003)

I. Sedliarou, V. Saenko, D. Lantsov, T. Rogounovitch, H. Namba, A. Abrosimov, E. Lushnikov, A. Kumagai, M. Nakashima, S. Meirmanov, M. Mine, T. Hayashi, S. Yamashita, The BRAFT1796A transversion is a prevalent mutational event in human thyroid microcarcinoma. Int. J. Oncol. 25, 1729–1735 (2004)

M. Olivier, R. Eeles, M. Hollstein, M.A. Khan, C.C. Harris, P. Hainaut, The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19, 607–614 (2002)

C. Zafon, G. Obiols, J. Castellví, N. Tallada, J.A. Baena, R. Simó, J. Mesa, Clinical significance of RET/PTC and p53 protein expression in sporadic papillary thyroid carcinoma. Histopathology 50, 225–231 (2007)

N. Morita, Y. Ikeda, H. Takami, Clinical significance of p53 protein expression in papillary thyroid carcinoma. World J. Surg. 32, 2617–2622 (2008)

A.Z. Balta, A.I. Filiz, Y. Kurt, I. Sucullu, E. Yucel, M.L. Akin, Prognostic value of oncoprotein expressions in thyroid papillary carcinoma. Med. Oncol. 29, 734–741 (2012)

S. Yoon, Y.S. An, S.J. Lee, E.Y. So, J.H. Kim, Y.S. Chung, J.K. Yoon, Relation between F-18 FDG uptake of PET/CT and BRAFV600E mutation in papillary thyroid cancer. Medicine (Baltimore) 94, 2063 (2015)

M. Yoon, S.J. Jung, T.H. Kim, T.K. Ha, S.H. Urm, J.S. Park, S.M. Lee, S.K. Bae, Relationships between transporter expression and the status of BRAF V600E mutation and F-18 FDG uptake in papillary thyroid carcinomas. Endocr. Res. 41, 64–69 (2016)

S.H. Lee, S. Han, H.S. Lee, S.Y. Chae, J.J. Lee, D.E. Song, J.S. Ryu, Association between (18)F-FDG avidity and the BRAF mutation in papillary thyroid carcinoma NUCL. Med. Mol. Imaging 50, 38–45 (2016)

M.K. Shin, J.W. Kim, Clinicopathologic and diagnostic significance of p53 protein expression in papillary thyroid carcinoma. Asian Pac. J. Cancer Prev. 15, 2341–2344 (2014)

F. Bertagna, G. Treglia, A. Piccardo, R. Giubbini, Diagnostic and clinical significance of F-18-FDG-PET/CT thyroid incidentalomas. J. Clin. Endocrinol. Metab. 97, 3866–3875 (2012)

H. Namba, M. Nakashima, T. Hayashi, N. Hayashida, S. Maeda, T.I. Rogounovitch, A. Ohtsuru, V.A. Saenko, T. Kanematsu, S. Yamashita, Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J. Clin. Endocrinol. Metab. 88, 4393–4397 (2003)

F. Li, G. Chen, C. Sheng, A.M. Gusdon, Y. Huang, Z. Lv, H. Xu, M. Xing, S. Qu, BRAFV600E mutation in papillary thyroid microcarcinoma: a meta-analysis. Endocr. Relat. Cancer 22, 159–168 (2015)

M. Yun, T.W. Noh, A. Cho, Y.J. Choi, S.W. Hong, C.S. Park, J.D. Lee, C.K. Kim, Visually discernible [18F] fluorodeoxyglucose uptake in papillary thyroid microcarcinoma: a potential new risk factor. J. Clin. Endocrinol. Metab. 95, 3182–3188 (2010)

J.C. Ricarte-Filho, M. Ryder, D.A. Chitale, M. Rivera, A. Heguy, M. Ladanyi, M. Janakiraman, D. Solit, J.A. Knauf, R.M. Tuttle, R.A. Ghossein, J.A. Fagin, Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res 69, 4885–4893 (2009)

N. Mitsutake, J.A. Knauf, S. Mitsutake, C. Mesa Jr, L. Zhang, J.A. Fagin, Conditional BRAFV600E expression induces DNA synthesis, apoptosis, dedifferentiation, and chromosomal instability in thyroid PCCL3 cells. Cancer Res 65, 2465–2473 (2005)

C. Romei, R. Ciampi, P. Faviana, L. Agate, E. Molinaro, V. Bottici, F. Basolo, P. Miccoli, F. Pacini, A. Pinchera, R. Elisei, BRAFV600E mutation, but not RET/PTC rearrangements, is correlated with a lower expression of both thyroperoxidase and sodium iodide symporter genes in papillary thyroid cancer. Endocr. Relat. Cancer 15, 511–520 (2008)

C. Durante, E. Puxeddu, E. Ferretti, R. Morisi, S. Moretti, R. Bruno, F. Barbi, N. Avenia, A. Scipioni, A. Verrienti, E. Tosi, A. Cavaliere, A. Gulino, S. Filetti, D. Russo, BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J. Clin. Endocrinol. Metab. 92, 2840–2843 (2007)

K. Matsuzu, F. Segade, U. Matsuzu, A. Carter, D.W. Bowden, N.D. Perrier, Differential expression of glucose transporters in normal and pathologic thyroid tissue. Thyroid 14, 806–812 (2004)

J. Schönberger, J. Rüschoff, D. Grimm, J. Marienhagen, P. Rümmele, R. Meyringer, P. Kossmehl, F. Hofstaedter, C. Eilles, Glucose transporter 1 gene expression is related to thyroid neoplasms with an unfavorable prognosis: an immunohistochemical study. Thyroid 12, 747–754 (2002)

Y.W. Kim, I.G. Do, Y.K. Park, Expression of the GLUT1 glucose transporter, p63 and p53 in thyroid carcinomas. Pathol. Res. Pract. 202, 759–765 (2006)

F. Grabellus, J. Nagarajah, A. Bockisch, K.W. Schmid, S.Y. Sheu, Glucose transporter 1 expression, tumor proliferation, and iodine/glucose uptake in thyroid cancer with emphasis on poorly differentiated thyroid carcinoma. Clin. Nucl. Med. 37, 121–127 (2012)

J.W. Lee, H.S. Min, S.M. Lee, H.W. Kwon, J.K. Chung, Relations between pathological markers and radioiodine scan and (18)F-FDG PET/CT findings in papillary thyroid cancer patients with recurrent cervical nodal metastases. Nucl. Med. Mol. Imaging 49, 127–134 (2015)