Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram

Journal of the American Mathematical Society - Tập 16 Số 3 - Trang 581-603
Andreĭ Okounkov1, Nicolai Reshetikhin1
1Department of Mathematics, University of California at Berkeley, Evans Hall #3840, Berkeley, California 94720-3840

Tóm tắt

The Schur process is a time-dependent analog of the Schur measure on partitions studied by A. Okounkov inInfinite wedge and random partitions, Selecta Math., New Ser.7(2001), 57–81. Our first result is that the correlation functions of the Schur process are determinants with a kernel that has a nice contour integral representation in terms of the parameters of the process. This general result is then applied to a particular specialization of the Schur process, namely to random 3-dimensional Young diagrams. The local geometry of a large random 3-dimensional diagram is described in terms of a determinantal point process on a 2-dimensional lattice with the incomplete beta function kernel (which generalizes the discrete sine kernel). A brief discussion of the universality of this answer concludes the paper.

Từ khóa


Tài liệu tham khảo

Borodin, Alexei, 2000, Asymptotics of Plancherel measures for symmetric groups, J. Amer. Math. Soc., 13, 481, 10.1090/S0894-0347-00-00337-4

Burton, Robert, 1993, Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances, Ann. Probab., 21, 1329

Cerf, Raphaël, 2001, The low-temperature expansion of the Wulff crystal in the 3D Ising model, Comm. Math. Phys., 222, 147, 10.1007/s002200100505

Cohn, Henry, 1996, Local statistics for random domino tilings of the Aztec diamond, Duke Math. J., 85, 117, 10.1215/S0012-7094-96-08506-3

Cohn, Henry, 2001, A variational principle for domino tilings, J. Amer. Math. Soc., 14, 297, 10.1090/S0894-0347-00-00355-6

Faddeev, L. D., 1994, Quantum dilogarithm, Modern Phys. Lett. A, 9, 427, 10.1142/S0217732394000447

FS P. Ferrari and H. Spohn, Step fluctuations for a faceted crystal, cond-mat/0212456.

Johansson, Kurt, 2001, Discrete orthogonal polynomial ensembles and the Plancherel measure, Ann. of Math. (2), 153, 259, 10.2307/2661375

Johansson, Kurt, 2001, Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices, Comm. Math. Phys., 215, 683, 10.1007/s002200000328

J3 K. Johansson, Non-intersecting paths, random tilings, and random matrices, math.PR/ 0011250, Probab. Theory Related Fields 123 (2002), 225–280.

Kac, Victor G., 1985, Infinite-dimensional Lie algebras, 2

Karlin, Samuel, 1959, Coincidence probabilities, Pacific J. Math., 9, 1141, 10.2140/pjm.1959.9.1141

Kenyon, Richard, 1997, Local statistics of lattice dimers, Ann. Inst. H. Poincar\'{e} Probab. Statist., 33, 591, 10.1016/S0246-0203(97)80106-9

Kenyon, Richard, 2000, The planar dimer model with boundary: a survey, 307

Macdonald, I. G., 1995, Symmetric functions and Hall polynomials, 2, 10.1093/oso/9780198534891.001.0001

Okounkov, Andrei, 2001, Infinite wedge and random partitions, Selecta Math. (N.S.), 7, 57, 10.1007/PL00001398

O2 A. Okounkov, Symmetric functions and random partitions, Symmetric functions 2001: Surveys of Developments and Perspectives, edited by S. Fomin, Kluwer Academic Publishers, 2002.

PS M. Praehofer and H. Spohn, Scale Invariance of the PNG Droplet and the Airy Process, math.PR/0105240, J. Statist. Phys. 108 (2002), 1071–1106.

V A. Vershik, talk at the 1997 conference on Formal Power Series and Algebraic Combinatorics, Vienna.