Correlation between boson peak and thermal expansion manifested by physical aging and high pressure

Science China Physics, Mechanics & Astronomy - Tập 65 - Trang 1-6 - 2022
Rongjie Xue1,2, Linzhi Zhao1, Yunqi Cai1, Jiaojiao Yi2, Jinguang Cheng1, Ping Wen1, Weihua Wang1,3, Mingxiang Pan1,4,5, Haiyang Bai1,3
1Institute of Physics, Chinese Academy of Sciences, Beijing, China
2School of Materials Engineering, Jiangsu University of Technology, Changzhou, China
3College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
4School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
5Songshan Lake Materials Laboratory, Dongguan, China

Tóm tắt

We investigate the effects of high pressure and physical aging on the boson peak and thermal expansion of a typical metallic glass. Specifically, the thermal expansion coefficient and boson peak intensity monotonically decrease during physical aging. With the increase of high pressure, the boson peak intensity and the thermal expansion coefficient coincidently experience an incipient decrease and then a subsequent increase. The boson peak intensity shows an approximately linear relationship with the thermal expansion coefficient. The thermal expansion can be affected by structural relaxation or rejuvenation, which can reflect the flow units variation and atomic packing of a metallic glass. Our results indicate a direct link between structural relaxation or rejuvenation and fast boson peak dynamics, providing insights into the boson peak behavior and structural heterogeneity of metallic glasses.

Tài liệu tham khảo

W. A. Phillips, Amorphous Solids: Low-Temperature Properties (Springer, Berlin, 1981). T. S. Grigera, V. Martén-Mayor, G. Parisi, and P. Verrocchio, Nature 422, 289 (2003). N. Tomoshige, S. Goto, H. Mizuno, T. Mori, K. Kim, and N. Matubayasi, J. Phys.-Condens. Matter 33, 274002 (2021). A. Giuntoli, and D. Leporini, Phys. Rev. Lett. 121, 185502 (2018). L. Zhang, J. Zheng, Y. Wang, L. Zhang, Z. Jin, L. Hong, Y. Wang, and J. Zhang, Nat. Commun. 8, 67 (2017). S. Gelin, H. Tanaka, and A. Lemaître, Nat. Mater. 15, 1177 (2016). V. Lubchenko, and P. G. Wolynes, Proc. Natl. Acad. Sci. USA 100, 1515 (2003). U. Buchenau, Y. M. Galperin, V. L. Gurevich, D. A. Parshin, M. A. Ramos, and H. R. Schober, Phys. Rev. B 46, 2798 (1992). V. L. Gurevich, D. A. Parshin, and H. R. Schober, Phys. Rev. B 67, 094203 (2003). V. A. Khonik, Chin. Phys. B 26, 016401 (2017). S. N. Taraskin, Y. L. Loh, G. Natarajan, and S. R. Elliott, Phys. Rev. Lett. 86, 1255 (2001). A. Chumakov, G. Monaco, A. Fontana, A. Bosak, R. Hermann, D. Bessas, B. Wehinger, W. Crichton, M. Krisch, R. Rüffer, G. Baldi, G. CariniJr., G. Carini, G. D’Angelo, E. Gilioli, G. Tripodo, M. Zanatta, B. Winkler, V. Milman, K. Refson, M. Dove, N. Dubrovinskaia, L. Dubrovinsky, R. Keding, and Y. Yue, Phys. Rev. Lett. 112, 025502 (2014). J. Yang, Y. J. Wang, E. Ma, A. Zaccone, L. H. Dai, and M. Q. Jiang, Phys. Rev. Lett. 122, 015501 (2019). A. Meyer, Phys. Rev. B 66, 134205 (2002). D. B. Miracle, Acta Mater. 61, 3157 (2013). Z. Wang, and W. H. Wang, Natl. Sci. Rev. 6, 304 (2019). K. Zhao, Z. Bai, L. Zhang, and G. Liu, Sci. China-Phys. Mech. Astron. 60, 106121 (2017). J. Bünz, T. Brink, K. Tsuchiya, F. Meng, G. Wilde, and K. Albe, Phys. Rev. Lett. 112, 135501 (2014). Y. P. Mitrofanov, M. Peterlechner, S. V. Divinski, and G. Wilde, Phys. Rev. Lett. 112, 135901 (2014). B. Huang, Z. G. Zhu, T. P. Ge, H. Y. Bai, B. A. Sun, Y. Yang, C. T. Liu, and W. H. Wang, Acta Mater. 110, 73 (2016). H. Shintani, and H. Tanaka, Nat. Mater. 7, 870 (2008). M. B. Tang, H. Y. Bai, and W. H. Wang, Phys. Rev. B 72, 012202 (2005). Y. Li, H. Y. Bai, W. H. Wang, and K. Samwer, Phys. Rev. B 74, 052201 (2006). R. J. Xue, L. Z. Zhao, M. X. Pan, B. Zhang, and W. H. Wang, J. Non-Crystal. Solids 425, 153 (2015). P. Luo, Y. Z. Li, H. Y. Bai, P. Wen, and W. H. Wang, Phys. Rev. Lett. 116, 175901 (2016). G. Ding, C. Li, A. Zaccone, W. H. Wang, H. C. Lei, F. Jiang, Z. Ling, and M. Q. Jiang, Sci. Adv. 5, eaaw6249 (2019). S. V. Ketov, Y. H. Sun, S. Nachum, Z. Lu, A. Checchi, A. R. Beraldin, H. Y. Bai, W. H. Wang, D. V. Louzguine-Luzgin, M. A. Carpenter, and A. L. Greer, Nature 524, 200 (2015). C. Wang, Z. Z. Yang, T. Ma, Y. T. Sun, Y. Y. Yin, Y. Gong, L. Gu, P. Wen, P. W. Zhu, Y. W. Long, X. H. Yu, C. Q. Jin, W. H. Wang, and H. Y. Bai, Appl. Phys. Lett. 110, 111901 (2017). N. W. Ashcroft, and N. D. Mermin, Solid State Physics (Saubders College Publishing, New York, 1976). R. Yamada, Y. Shibazaki, Y. Abe, W. Ryu, and J. Saida, Sci. Rep. 10, 7438 (2020). J. Guo, S. Joo, D. Pi, W. Kim, Y. Song, H. S. Kim, X. Zhang, and D. Kong, Adv. Eng. Mater. 21, 1800918 (2018). N. Mattern, J. Bednarcik, M. Stoica, and J. Eckert, Intermetallics 32, 51 (2013). V. L. Gurevich, D. A. Parshin, and H. R. Schober, Phys. Rev. B 71, 014209 (2005). K. Niss, B. Begen, B. Frick, J. Ollivier, A. Beraud, A. Sokolov, V. N. Novikov, and C. Alba-Simionesco, Phys. Rev. Lett. 99, 055502 (2007). L. Hong, B. Begen, A. Kisliuk, S. Pawlus, M. Paluch, and A. P. Sokolov, Phys. Rev. Lett. 102, 145502 (2009). R. J. Xue, L. Z. Zhao, C. L. Shi, T. Ma, X. K. Xi, M. Gao, P. W. Zhu, P. Wen, X. H. Yu, C. Q. Jin, M. X. Pan, W. H. Wang, and H. Y. Bai, Appl. Phys. Lett. 109, 221904 (2016). J. C. Bendert, M. E. Blodgett, A. K. Gangopadhyay, and K. F. Kelton, Appl. Phys. Lett. 102, 211913 (2013). H. Kato, H. S. Chen, and A. Inoue, Script. Mater. 58, 1106 (2008). N. Mattern, M. Stoica, G. Vaughan, and J. Eckert, Acta Mater. 60, 517 (2012). J. Steinberg, S. Tyagi, and A. E. LordJr., J. Non-Crystal. Solids 41, 279 (1980). J. C. Mauro, S. S. Uzun, W. Bras, and S. Sen, Phys. Rev. Lett. 102, 155506 (2009). R. Richert, Phys. Rev. Lett. 104, 085702 (2010). W. X. Jiang, and B. Zhang, Sci. China-Phys. Mech. Astron. 57, 1870 (2014). V. M. Giordano, and B. Ruta, Nat. Commun. 7, 10344 (2016). J. Ding, M. Asta, and R. O. Ritchie, Phys. Rev. B 93, 140204 (2016). N. Miyazaki, M. Wakeda, Y. J. Wang, and S. Ogata, npj Comput. Mater. 2, 16013 (2016). M. T. Sandor, H. B. Ke, W. H. Wang, and Y. Wu, J. Phys.-Condens. Matter 25, 165701 (2013). C. C. Yuan, J. F. Xiang, X. K. Xi, and W. H. Wang, Phys. Rev. Lett. 107, 236403 (2011).