Mối liên hệ giữa Thành phần và Tính chất Điện động lực trong Các Hợp chất Nano Dựa trên Ferrimagnet cứng/mềm với Liên kết Trao đổi Mạnh
Tóm tắt
Trong nghiên cứu này, Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x (với x = 2, 3, 4 và 5) được chế tạo dưới dạng ferrite kích thước nano có liên kết trao đổi mạnh bằng phương pháp cháy sol-gel một bước (phương pháp sol-gel citrate). Các mẫu bột được phân tích bằng phương pháp tán xạ tia X (XRD) xác nhận sự hình thành của ferrite thuần khiết và có liên kết trao đổi. Đặc tính tần suất của điện từ trường vi sóng (MW) được khảo sát bằng phương pháp đồng trục. Hành vi phi tuyến của MW với sự biến đổi thành phần có thể do các mức độ oxy hóa khác nhau của ion Fe trên các ranh giới hạt spinel/hexaferrite và tương tác trao đổi mạnh trong giai đoạn cứng và mềm.
Từ khóa
#nguyên liệu nano #ferrite #liên kết trao đổi mạnh #đặc tính điện từ vi sóng #phân tích XRDTài liệu tham khảo
Tokunaga, 2010, Multiferroic M-Type Hexaferrites with a Room-Temperature Conical State and Magnetically Controllable Spin Helicity, Phys. Rev. Lett., 105, 257201, 10.1103/PhysRevLett.105.257201
Lin, Q., Xu, J., Yang, F., Lin, J., Yang, H., and He, Y. (2018). Magnetic and Mössbauer Spectroscopy Studies of Zinc-Substituted Cobalt Ferrites Prepared by the Sol-Gel Method. Materials, 11.
Kumar, 2013, Effect of particle size of BaFe12O19 on the microwave absorption characterıstıcs in X-band, Prog. Electromagn. Res., M29, 223, 10.2528/PIERM13011604
Demokritov, 2006, Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping, Nature, 443, 430, 10.1038/nature05117
Kostishyn, 2016, Dual ferroic properties of hexagonal ferrite ceramics BaFe12O19 and SrFe12O19, J. Magn. Magn. Mater., 400, 327, 10.1016/j.jmmm.2015.09.011
Trukhanov, 2016, Coexistence of spontaneous polarization and magnetization in substituted M-type hexaferrites BaFe12–xAlxO19 (x ≤ 1.2) at room Temperature, JETP Lett., 103, 100, 10.1134/S0021364016020132
Wang, 2014, Room-temperature ferrimagnet with frustrated antiferroelectricity: Promising candidate toward multiple-state memory, Phys. Rev. X, 4, 011035
Nan, 2008, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, J. Appl. Phys., 103, 031101, 10.1063/1.2836410
Liu, 2005, Coupling interaction in multiferroic BaTiO3-CoFe2O4 nanostructures, J. Phys. D Appl. Phys., 38, 2321, 10.1088/0022-3727/38/14/005
Zhang, 2008, Multiferroic properties of Ni0.5Zn0.5Fe2O4–Pb(Zr0.53Ti0.47)O3 ceramic composites, J. Appl. Phys., 104, 104109, 10.1063/1.3021349
Trukhanov, 2018, Preparation and investigation of structure, magnetic and dielectric properties of (BaFe11.9Al0.1O19)1-x—(BaTiO3)x bicomponent ceramics, Ceram. Int., 44, 21295, 10.1016/j.ceramint.2018.08.180
Turchenko, 2016, Features of crustal and magnetıc structures of solıd solutıons Ba12-xDxO19 (D=Al3+, In3+; x=0.1) ın a wıde temperature range, Eur. Phys. J. Plus, 131, 82, 10.1140/epjp/i2016-16082-x
Pastore, 2019, Carbon foam electromagnetic mm-wave absorption in reverberation chamber, Carbon, 144, 63, 10.1016/j.carbon.2018.12.026
Mazzoli, 2018, Effect of graphene oxide and metallic fibers on the electromagnetic shielding effect of engineered cementitious composites, J. Build. Eng., 18, 33, 10.1016/j.jobe.2018.02.019
Micheli, 2017, Matter’s electromagnetic signature reproduction by graded-dielectric multilayer assembly, IEEE Trans. Microw. Theory Techn., 5, 2801, 10.1109/TMTT.2017.2679749
Micheli, 2014, Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders, Carbon, 77, 756, 10.1016/j.carbon.2014.05.080
Kuświk, P., Gaul, A., Urbaniak, M., Schmidt, M., Aleksiejew, J., Ehresmann, A., and Stobiecki, F. (2018). Tailoring Perpendicular Exchange Bias Coupling in Au/Co/NiO Systems by Ion Bombardment. Nanomaterials, 8.
Chen, 2014, Effect of Low-Frequency AC Magnetic Susceptibility and Magnetic Properties of CoFeB/MgO/CoFeB Magnetic Tunnel Junctions, Nanomaterials, 4, 46, 10.3390/nano4010046
Yang, 2015, Exchange coupling behavior and microwave absorbing property of the hard/soft (BaFe12O19/Y3Fe5O12) ferrites based on polyaniline, Synth. Metals, 210, 245, 10.1016/j.synthmet.2015.10.006
Trukhanov, 2017, Magnetıc, dıelectrıc and mıcrowave propertıes of the BaFe12-xGaxO19 (x ≤ 1.2) solıd solutıons at room temperature, J. Magn. Magn. Mater., 442, 300, 10.1016/j.jmmm.2017.06.022
Trukhanov, 2017, Investıgatıon of structure features and mıcrowave absorptıon by doped barıum hexaferrıtes, Dalton Trans., 46, 9010, 10.1039/C7DT01708A
Skomski, 1993, Giant energy product in nanostructured two-phase magnets, Phys. Rev. B, 48, 15812, 10.1103/PhysRevB.48.15812
Feng, 2017, Exchange coupling and microwave absorption in core/shell-structured hard/soft ferrite-based CoFe2O4/NiFe2O4 nanocapsules, AIP Adv., 7, 056403, 10.1063/1.4972805
Afshar, 2018, Structural, magnetic and microwave absorption properties of SrFe12O19/Ni0.6Zn0.4Fe2O4 composites prepared by one-pot solution combustion method, J. Magn. Magn. Mater., 466, 1, 10.1016/j.jmmm.2018.06.061
Shen, 2012, Shape Anisotropy, Exchange-Coupling Interaction and Microwave Absorption of Hard/Soft Nanocomposite Ferrite Microfibers, J. Am. Ceram. Soc., 95, 3863, 10.1111/j.1551-2916.2012.05375.x
Torkian, 2016, Magnetic properties of hard-soft SrFe10Al2O19/Co0.8Ni0.2Fe2O4 ferrite synthesized by one-pot sol-gel autocombustion, J. Magn. Magn. Mater., 416, 408, 10.1016/j.jmmm.2016.05.050
Bennet, 2016, Attestation in self-propagating combustion approach of spinel AFe2O4 (A=Co, Mg and Mn) complexes bearing mixed oxidation states: Magnetostructural properties, Appl. Surf. Sci., 383, 113, 10.1016/j.apsusc.2016.04.177
Han, 2018, Exchange-coupled Ni0.5Zn0.5Fe2O4/SrFe12O19 composites with enhanced microwave absorption performance, J. Alloys Compd., 768, 742, 10.1016/j.jallcom.2018.07.310
Almessiere, 2018, Exchange spring magnetic behavior of Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x nanocomposites fabricated by a one-pot citrate sol-gel combustion method, J. Alloys Compd., 762, 389, 10.1016/j.jallcom.2018.05.232
Klygach, 2018, Measurement of permittivity and permeability of barium hexaferrite, J. Magn. Magn. Mater., 456, 290, 10.1016/j.jmmm.2018.05.054
Vinnik, 2018, Electromagnetic properties of BaFe12O19:Ti at centimeter wavelengths, J. Alloys Compd., 755, 177, 10.1016/j.jallcom.2018.04.315
Trukhanov, 2018, Correlation of the atomic structure, magnetic properties and microwave characteristics in substituted hexagonal ferrites, J. Magn. Magn. Mater., 462, 127, 10.1016/j.jmmm.2018.05.006
Trukhanov, 2018, Control of Elecromagnetic properties in Substituted M-type Hexagonal ferrites, J. Alloys Compd., 754, 247, 10.1016/j.jallcom.2018.04.150
Trukhanov, 2018, Critical Influence of Different Diamagnetic Ions on Electromagnetis Properties of BaFe12O19, Ceram. Int., 44, 13520, 10.1016/j.ceramint.2018.04.183
Tong, L., Zha, H., and Tian, Y. (2013, January 21–26). Determining the complex permittivity of powder materials from 1–40 GHz using transmission–line technique. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Melbourne, VIC, Australia.
Nicolson, 1970, Measurement of the intrinsic properties of materials by time-domain techniques, IEEE Trans. Instrum. Meas., 19, 77, 10.1109/TIM.1970.4313932
Wang, 2011, Study on the Absorption Properties of Spinel Type Ferrite Composite Coatings in the Low Frequency, Adv. Mater. Res., 415–417, 30