Correction to: The Effect of Bacterial Sulfate Reduction Inhibition on the Production and Stable Isotopic Composition of Methane in Hypersaline Environments

Aquatic Geochemistry - Tập 26 - Trang 311-325 - 2020
Cheryl A. Kelley1, Brad M. Bebout2, Jeffrey P. Chanton3, Angela M. Detweiler2,4, Adrienne Frisbee2,5, Brooke E. Nicholson1,6, Jennifer Poole1,7, Amanda Tazaz3,8, Claire Winkler1,9
1Department of Geological Sciences, University of Missouri, Columbia, USA
2Exobiology Branch, NASA Ames Research Center, Moffett Field, USA
3Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, USA
4Bay Area Environmental Research Institute, Moffett Field, USA
5De Anza College, Cupertino, USA
6AECOM, Omaha, USA
7Pennoni Associates Inc., Philadelphia, USA
8Learning Systems Institute, Florida State University, Tallahassee, USA
9Thermo Fisher, St. Louis, USA

Tóm tắt

For reason beyond the control of the authors or the editors, the article.

Tài liệu tham khảo

Banat IM, Lindström EB, Nedwell DB, Balba MT (1981) Evidence for coexistence of two distinct functional groups of sulfate-reducing bacteria in salt marsh sediment. Appl Environ Microbiol 42:985–992 Beaudoin CS (2015) Use of stable carbon isotopes to assess anaerobic and aerobic methane oxidation in hypersaline ponds. Masters thesis, University of Missouri Bull AT, Asenjo JA (2013) Microbiology of hyper-arid environments: recent insights from the Atacama Desert, Chile. Antonie Van Leeuwenhoek 103:1173–1179 Canfield DE, Des Marais DJ (1993) Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochim Cosmochim Acta 16:3971–3984 Conrad R (2005) Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org Geochem 36:739–752 Des Marais DJ (1995) The biogeochemistry of hypersaline microbial mats. Adv Microb Ecol 14:251–274 Des Marais DJ (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Bio Bull 204:160–167 Des Marais DJ, Cohen Y, Nguyen H, Cheatham M, Cheatham T, Munoz E (1989) Carbon isotopic trends in the hypersaline ponds and microbial mats at Guerrero Negro, Baja California Sur, Mexico: implications for Precambrian stromatolites. In: Cohen Y, Rosenberg E (eds) Microbial mats: physiological ecology of benthic microbial communities. American Society for Microbiology, Washington DC, pp 191–203 García-Maldonado JQ, Bebout BM, Celis LB, López-Cortés A (2012) Phylogenetic diversity of methyl-coenzyme M reductase (mcrA) gene and methanogenesis from trimethylamine in hypersaline environments. Int Microbiol 15:33–41 García-Maldonado JQ, Bebout BM, Everroad RC, López-Cortés A (2015) Evidence of novel phylogenetic lineages of methanogenic Archaea from hypersaline microbial mats. Microb Ecol 69:106–117 García-Maldonado JQ, Escobar-Zepeda A, Raggi L, Bebout BM, Sanchez-Flores A, López-Cortés A (2018) Bacterial and archaeal profiling of hypersaline microbial mats and endoevaporites, under natural conditions and methanogenic microcosm experiments. Extremophiles 22:903–916 Kelley CA, Prufert-Bebout LE, Bebout BM (2006) Changes in carbon cycling ascertained by stable isotopic analyses in a hypersaline microbial mat. J Geophys Res. https://doi.org/10.1029/2006JG000212 Kelley CA, Poole JA, Tazaz AM, Chanton JP, Bebout BM (2012) Substrate limitation for methanogenesis in hypersaline environments. Astrobiol 12:89–97 Kelley CA, Nicholson BE, Beaudoin CS, Detweiler AM, Bebout BM (2014) Trimethylamine and organic matter additions reverse substrate limitation effects on the δ13C values of methane produced in hypersaline microbial mats. Appl Environ Microbiol 80:7316–7323 Kelley CA, Chanton JP, Bebout BM (2015) Rates and pathways of methanogenesis in hypersaline environments as determined by 13C-labeling. Biogeochemistry 126:329–341 King GM (1991) Measurement of acetate concentrations in marine pore waters by using an enzymatic approach. Appl Environ Microbiol 57:3476–3481 King GM, Klug MJ, Lovley DR (1983) Metabolism of acetate, methanol, and methylated amines in intertidal sediments of Lowes Cove, Maine. Appl Environ Microbiol 45:1848–1853 McEwen AS, Ojha L, Dundas CM, Mattson SS, Byrne S, Wray JJ, Cull SC, Murchie SL, Thomas N, Gulick VC (2011) Seasonal flows on warm Martian slopes. Science 333:740–743 Nicholson B (2013) Effect of increasing trimethylamine and organic matter concentration on stable carbon isotopes of methane produced in hypersaline, substrate limited environments. Masters thesis, University of Missouri Ojha L, Wilhelm MB, Murchie SL, McEwen AS, Wray JJ, Hanley J, Massé M, Chojnacki M (2015) Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat Geosci 8:829–832 Oremland RS, Capone DG (1988) Use of “specific” inhibitors in biogeochemistry and microbial ecology. Adv Microb Ecol 10:285–383 Oremland RS, Polcin S (1982) Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl Environ Microbiol 44:1270–1276 Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:1908–1923 Osterloo MM, Hamilton VE, Banfield JL, Glotch TD, Baldridge AM, Christensen PR, Tornabene LL, Anderson FS (2008) Chloride-bearing materials in the southern highlands of Mars. Science 319:1651–1654 Rice AL, Gotoh AA, Ajie HO, Tyler SC (2001) High precision continuous-flow measurements of δ13C and δD of atmospheric CH4. Anal Chem 73:4104–4110 Sørensen KB, Canfield DE, Oren A (2004) Salinity responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl Environ Microbiol 70:1608–1616 Summons RE, Franzmann PE, Nichols PD (1998) Carbon isotopic fractionation associated with methylotrophic methanogenesis. Org Geochem 28:465–475 Tazaz AM, Bebout BM, Kelley CA, Poole J, Chanton JP (2013) Redefining the isotopic boundaries of biogenic methane: methane from endoevaporites. Icarus 224:268–275 Webster CR, Mahaffy PR, Atreya SK, Moores JE, Flesch GJ, Malespin C, McKay CP, Martinez G, Smith CL, Martin-Torres J, Gomez-Elvira J, Zorzano M-P, Wong MH, Trainer MG, Steele A, Archer D Jr, Sutter B, Coll PJ, Freissinet C, Meslin P-Y, Gough RV, House CH, Pavlov A, Eigenbrode JL, Glavin DP, Pearson JC, Keymeulen D, Christensen LE, Schwenzer SP, Navarro-Gonzalez R, Pla-García J, Rafkin SCR, Vicente-Retortillo Á, Kahanpää H, Viudez-Moreiras D, Smith MD, Harri A-M, Genzer M, Hassler DM, Lemmon M, Crisp J, Sander SP, Zurek RW, Vasavada AR (2018) Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science 360:1093–1096 Welsh DT, Lindsay YE, Caumette P, Herbert RA, Hannan J (1996) Identification of trehalose and glycine betaine as compatible solutes in the moderately halophilic sulfate reducing bacterium, Desulfovibrio halophilus. FEMS Microbiol Lett 140:203–207 Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314 Yung YL, Chen P, Nealson K, Atreya S, Beckett P, Blank JG, Ehlmann B, Eiler J, Etiope G, Ferry JG, Forget F, Gao P, Hu R, Kleinböhl A, Klusman R, Lefevre F, Miller C, Mischna M, Mumma M, Newman S, Oehler D, Okumura M, Oremland R, Orphan V, Popa R, Russell M, Shen L, Sherwood Lollar B, Staehle R, Stamenković V, Stolper D, Templeton A, Vandaele AC, Viscardy S, Webster CR, Wennberg PO, Wong ML, Worden J (2018) Methane on Mars and habitability: challenges and responses. Astrobiol 18:1221–1242