Correction of the aprt Gene Using Repair-Polypurine Reverse Hoogsteen Hairpins in Mammalian Cells
Tóm tắt
Từ khóa
Tài liệu tham khảo
(1996). Control of hereditary diseases. Report of a WHO Scientific Group. World Health Organ. Tech. Rep. Ser. 865, 1–84.
Urnov, 2005, Highly efficient endogenous human gene correction using designed zinc-finger nucleases, Nature, 435, 646, 10.1038/nature03556
Yusa, 2011, Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells, Nature, 478, 391, 10.1038/nature10424
Chen, 2011, High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases, Nat. Methods, 8, 753, 10.1038/nmeth.1653
Mori, 2014, Sandwiched zinc-finger nucleases demonstrating higher homologous recombination rates than conventional zinc-finger nucleases in mammalian cells, Bioorg. Med. Chem. Lett., 24, 813, 10.1016/j.bmcl.2013.12.096
Ding, 2013, A TALEN genome-editing system for generating human stem cell-based disease models, Cell Stem Cell, 12, 238, 10.1016/j.stem.2012.11.011
Mosbach, 2018, TALEN-induced double-strand break repair of CTG trinucleotide repeats, Cell Rep., 22, 2146, 10.1016/j.celrep.2018.01.083
Yahata, 2017, TALEN-mediated shift of mitochondrial DNA heteroplasmy in MELAS-iPSCs with m.13513G>A mutation, Sci. Rep., 7, 15557, 10.1038/s41598-017-15871-y
Bedell, 2012, In vivo genome editing using a high-efficiency TALEN system, Nature, 491, 114, 10.1038/nature11537
Low, 2014, Correction of the Crb1rd8 allele and retinal phenotype in C57BL/6N mice via TALEN-mediated homology-directed repair, Invest. Ophthalmol. Vis. Sci., 55, 387, 10.1167/iovs.13-13278
Jain, 2017, CRISPR-Cas9-based treatment of myocilin-associated glaucoma, Proc. Natl. Acad. Sci. USA, 114, 11199, 10.1073/pnas.1706193114
Park, 2019, In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease, Nat. Neurosci., 22, 524, 10.1038/s41593-019-0352-0
Amoasii, 2018, Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy, Science, 362, 86, 10.1126/science.aau1549
Ousterout, 2015, Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy, Nat. Commun., 6, 6244, 10.1038/ncomms7244
Ruan, 2019, Efficient gene editing at major CFTR mutation loci, Mol. Ther. Nucleic Acids, 16, 73, 10.1016/j.omtn.2019.02.006
Komor, 2016, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, Nature, 533, 420, 10.1038/nature17946
Gaudelli, 2017, Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage, Nature, 551, 464, 10.1038/nature24644
Komor, 2018, Editing the genome without double-stranded DNA breaks, ACS Chem. Biol., 13, 383, 10.1021/acschembio.7b00710
Anzalone, 2019, Search-and-replace genome editing without double-strand breaks or donor DNA, Nature, 576, 149, 10.1038/s41586-019-1711-4
Zhang, 2015, Off-target effects in CRISPR/Cas9-mediated genome engineering, Mol. Ther. Nucleic Acids, 4, e264, 10.1038/mtna.2015.37
Shin, 2017, CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome, Nat. Commun., 8, 15464, 10.1038/ncomms15464
van Ravesteyn, 2016, LNA modification of single-stranded DNA oligonucleotides allows subtle gene modification in mismatch-repair-proficient cells, Proc. Natl. Acad. Sci. USA, 113, 4122, 10.1073/pnas.1513315113
Igoucheva, 2001, Targeted gene correction by small single-stranded oligonucleotides in mammalian cells, Gene Ther., 8, 391, 10.1038/sj.gt.3301414
Ellis, 2001, High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides, Proc. Natl. Acad. Sci. USA, 98, 6742, 10.1073/pnas.121164898
McLachlan, 2009, Specific targeted gene repair using single-stranded DNA oligonucleotides at an endogenous locus in mammalian cells uses homologous recombination, DNA Repair (Amst.), 8, 1424, 10.1016/j.dnarep.2009.09.014
Chin, 2008, Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids, Proc. Natl. Acad. Sci. USA, 105, 13514, 10.1073/pnas.0711793105
Lonkar, 2009, Targeted correction of a thalassemia-associated β-globin mutation induced by pseudo-complementary peptide nucleic acids, Nucleic Acids Res., 37, 3635, 10.1093/nar/gkp217
Bahal, 2016, In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery, Nat. Commun., 7, 13304, 10.1038/ncomms13304
Ricciardi, 2018, In utero nanoparticle delivery for site-specific genome editing, Nat. Commun., 9, 2481, 10.1038/s41467-018-04894-2
McNeer, 2015, Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium, Nat. Commun., 6, 6952, 10.1038/ncomms7952
de Almagro, 2009, Polypurine hairpins directed against the template strand of DNA knock down the expression of mammalian genes, J. Biol. Chem., 284, 11579, 10.1074/jbc.M900981200
Ciudad, 2017, Polypurine reverse Hoogsteen hairpins as a gene silencing tool for cancer, Curr. Med. Chem., 24, 2809, 10.2174/0929867324666170301114127
Mencia, 2011, Underexpression of miR-224 in methotrexate resistant human colon cancer cells, Biochem. Pharmacol., 82, 1572, 10.1016/j.bcp.2011.08.009
Rodríguez, 2013, Polypurine reverse Hoogsteen hairpins as a gene therapy tool against survivin in human prostate cancer PC3 cells in vitro and in vivo, Biochem. Pharmacol., 86, 1541, 10.1016/j.bcp.2013.09.013
Oleaga, 2012, Identification of novel Sp1 targets involved in proliferation and cancer by functional genomics, Biochem. Pharmacol., 84, 1581, 10.1016/j.bcp.2012.09.014
Villalobos, 2015, Effect of polypurine reverse Hoogsteen hairpins on relevant cancer target genes in different human cell lines, Nucleic Acid Ther., 25, 198, 10.1089/nat.2015.0531
de Almagro, 2011, Coding polypurine hairpins cause target-induced cell death in breast cancer cells, Hum. Gene Ther., 22, 451, 10.1089/hum.2010.102
Bener, 2016, Silencing of CD47 and SIRPα by polypurine reverse Hoogsteen hairpins to promote MCF-7 breast cancer cells death by PMA-differentiated THP-1 cells, BMC Immunol., 17, 32, 10.1186/s12865-016-0170-z
Medina Enríquez, 2018, Cancer immunotherapy using Polypurine reverse Hoogsteen hairpins targeting the PD-1/PD-L1 pathway in human tumor cells, PLoS One, 13, e0206818, 10.1371/journal.pone.0206818
Ciudad, 2019, Silencing PD-1 and PD-L1: the potential of PolyPurine Reverse Hoogsteen hairpins for the elimination of tumor cells, Immunotherapy, 11, 369, 10.2217/imt-2018-0215
Félix, 2018, Functional pharmacogenomics and toxicity of PolyPurine Reverse Hoogsteen hairpins directed against survivin in human cells, Biochem. Pharmacol., 155, 8, 10.1016/j.bcp.2018.06.020
Solé, 2014, Repair of single-point mutations by polypurine reverse Hoogsteen hairpins, Hum. Gene Ther. Methods, 25, 288, 10.1089/hgtb.2014.049
Solé, 2016, Correction of point mutations at the endogenous locus of the dihydrofolate reductase gene using repair-PolyPurine Reverse Hoogsteen hairpins in mammalian cells, Biochem. Pharmacol., 110–111, 16, 10.1016/j.bcp.2016.04.002
Edvardsson, 2019
Bollée, 2012, Adenine phosphoribosyltransferase deficiency, Clin. J. Am. Soc. Nephrol., 7, 1521, 10.2215/CJN.02320312
Goñi, 2004, Triplex-forming oligonucleotide target sequences in the human genome, Nucleic Acids Res., 32, 354, 10.1093/nar/gkh188
Brachman, 2005, Gene repair in mammalian cells is stimulated by the elongation of S phase and transient stalling of replication forks, DNA Repair (Amst.), 4, 445, 10.1016/j.dnarep.2004.11.007
Majumdar, 2003, Cell cycle modulation of gene targeting by a triple helix-forming oligonucleotide, J. Biol. Chem., 278, 11072, 10.1074/jbc.M211837200
Olsen, 2005, Implications of cell cycle progression on functional sequence correction by short single-stranded DNA oligonucleotides, Gene Ther., 12, 546, 10.1038/sj.gt.3302454
Cradick, 2013, CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity, Nucleic Acids Res., 41, 9584, 10.1093/nar/gkt714
Allen, 2018, Predicting the mutations generated by repair of Cas9-induced double-strand breaks, Nat. Biotechnol., 37, 64, 10.1038/nbt.4317
Anderson, 2018, CRISPR off-target analysis in genetically engineered rats and mice, Nat. Methods, 15, 512, 10.1038/s41592-018-0011-5
Lin, 2014, CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences, Nucleic Acids Res., 42, 7473, 10.1093/nar/gku402
Schaefer, 2017, Unexpected mutations after CRISPR-Cas9 editing in vivo, Nat. Methods, 14, 547, 10.1038/nmeth.4293
Haapaniemi, 2018, CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response, Nat. Med., 24, 927, 10.1038/s41591-018-0049-z
Kosicki, 2018, Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements, Nat. Biotechnol., 36, 765, 10.1038/nbt.4192
Cullot, 2019, CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations, Nat. Commun., 10, 1136, 10.1038/s41467-019-09006-2
Wagner, 2019, High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population, Nat. Med., 25, 242, 10.1038/s41591-018-0204-6
Charlesworth, 2019, Identification of preexisting adaptive immunity to Cas9 proteins in humans, Nat. Med., 25, 249, 10.1038/s41591-018-0326-x
Villalobos, 2014, Stability and immunogenicity properties of the gene-silencing polypurine reverse Hoogsteen hairpins, Mol. Pharm., 11, 254, 10.1021/mp400431f
Berman, 2016, OSWG recommendations for genotoxicity testing of novel oligonucleotide-based therapeutics, Nucleic Acid Ther., 26, 73, 10.1089/nat.2015.0534
2005
Henry, 2002, Assessment of the genotoxic potential of ISIS 2302: a phosphorothioate oligodeoxynucleotide, Mutagenesis, 17, 201, 10.1093/mutage/17.3.201
Sazani, 2010, Safety pharmacology and genotoxicity evaluation of AVI-4658, Int. J. Toxicol., 29, 143, 10.1177/1091581809359206
Guérard, 2017, Locked nucleic acid (LNA): based single-stranded oligonucleotides are not genotoxic, Environ. Mol. Mutagen., 58, 112, 10.1002/em.22076
Knauert, 2006, Triplex-stimulated intermolecular recombination at a single-copy genomic target, Mol. Ther., 14, 392, 10.1016/j.ymthe.2006.03.020
Datta, 2001, Triplex-induced recombination in human cell-free extracts. Dependence on XPA and HsRad51, J. Biol. Chem., 276, 18018, 10.1074/jbc.M011646200
Rogers, 2002, Site-directed recombination via bifunctional PNA-DNA conjugates, Proc. Natl. Acad. Sci. USA, 99, 16695, 10.1073/pnas.262556899
Faruqi, 2000, Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway, Mol. Cell. Biol., 20, 990, 10.1128/MCB.20.3.990-1000.2000
Papaioannou, 2012, Oligonucleotide-directed gene-editing technology: mechanisms and future prospects, Expert Opin. Biol. Ther., 12, 329, 10.1517/14712598.2012.660522
Gupta, 1997, Activities of human recombination protein Rad51, Proc. Natl. Acad. Sci. USA, 94, 463, 10.1073/pnas.94.2.463
Krejci, 2012, Homologous recombination and its regulation, Nucleic Acids Res., 40, 5795, 10.1093/nar/gks270
Vasquez, 2002, Human XPA and RPA DNA repair proteins participate in specific recognition of triplex-induced helical distortions, Proc. Natl. Acad. Sci. USA, 99, 5848, 10.1073/pnas.082193799
Phear, 1989, Molecular basis of spontaneous mutation at the aprt locus of hamster cells, J. Mol. Biol., 209, 577, 10.1016/0022-2836(89)90595-0
Simon, 1982, Model involving gene inactivation in the generation of autosomal recessive mutants in mammalian cells in culture, Mol. Cell. Biol., 2, 1126
Wigler, 1979, DNA-mediated transfer of the adenine phosphoribosyltransferase locus into mammalian cells, Proc. Natl. Acad. Sci. USA, 76, 1373, 10.1073/pnas.76.3.1373
Johnson, 1977, Adenine phosphoribosyltransferase: a simple spectrophotometric assay and the incidence of mutation in the normal population, Biochem. Genet., 15, 265, 10.1007/BF00484458
Marco-Sola, 2012, The GEM mapper: fast, accurate and versatile alignment by filtration, Nat. Methods, 9, 1185, 10.1038/nmeth.2221
McKenna, 2010, The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res., 20, 1297, 10.1101/gr.107524.110