Corpus callosum shape analysis with application to dyslexia
Tóm tắt
Morphometric studies of the corpus callosum suggest its involvement in a number of psychiatric conditions. In the present study we introduce a novel pattern recognition technique that offers a point-bypoint shape descriptor of the corpus callosum. The method uses arc lengths of electric field lines in order to avoid discontinuities caused by folding anatomical contours. We tested this technique by comparing the shape of the corpus callosum in a series of dyslexic men (n = 16) and age-matched controls (n = 14). The results indicate a generalized increase in size of the corpus callosum in dyslexia with a concomitant diminution at its rostral and caudal poles. The reported shape analysis and 2D-reconstruction provide information of anatomical importance that would otherwise passed unnoticed when analyzing size information alone.
Tài liệu tham khảo
Rilling J.K., Insel T.R., The primate neocortex in comparative perspective using magnetic resonance imaging, J. Hum. Evol., 1999, 37, 191–223
Olivares R., Michalland S., Aboitiz F., Cross-species and intraspecies morphometric analysis of the corpus callosum, Brain. Behav. Evol., 2000, 55, 37–43
Striedter G.F., Principles of brain evolution, Sinauer Associates, Sunderland, 2005
Johnson S.B., Casanova M.F., Interhemispheric connectivity: the evolution and nature of the corpus callosum, In: T.B. Westland and R.N. Calton, (Eds.), Handbook on white matter: Structure, function, and changes, Nova Science, Hauppauge, 2009, 3–15
Williams E.L., Casanova M.F., Autism and dyslexia: a spectrum of cognitive styles as defined by minicolumnar morphometry, Med. Hypotheses, 2009, in press
Wolf M., Proust and the squid: The story and science of the reading brain, HarperCollins, New York, 2007
Vellutino F.R., Scanlon D.M., Phonological coding, phonological awareness and reading ability: evidence from a longitudinal and experimental study, Merrill-Palmer Q., 1987, 33, 321–363
Casanova M.F., Araque J., Giedd J., Rumsey J.M., Reduced brain size and gyrification in the brains of dyslexic patients, J. Child Neurol., 2004, 19, 275–281
Casanova M.F., Christensen J.D., Giedd J., Rumsey J.M., Garver D.L., Postel G.C., Magnetic resonance imaging study of brain asymmetries in dyslexic patients, J. Child Neurol., 2005, 20, 842–847
Casanova M.F., El-Baz A.S., Giedd J., Rumsey J.M., Switala A.E., Increased white matter gyral depth in dyslexia: implications for corticocortical connectivity, J. Autism Dev. Disord., 2009, in press
Casanova M.F., Sanders R.D., Goldberg T.E., Bigelow L.B., Christison G., Torrey E.F., et al., Morphometry of the corpus callosum in monozygotic twins discordant for schizophrenia: a magnetic resonance imaging study, J. Neurol. Neurosurg. Psychiatry, 1990, 53, 416–421
Di Donato M., Dabic P., Castelvecchio S., Santambrogio C., Brankovic J., Collarini L., et al., Left ventricular geometry in normal and post-anterior myocardial infarction patients: sphericity index and ‘new’ conicity index comparisons, Eur. J. Cardiothorac. Surg., 2006, 29, S225–S230
Sabo E., Beck A.H., Montgomery E.A., Bhattacharya B., Meitner P., Wang J.Y., et al., Computerized morphometry as an aid in determining the grade of dysplasia and progression to adenocarcinoma in Barrett’s esophagus, Lab. Invest., 2006, 86, 1261–1271
Casanova M.F., Zito M., Goldberg T.E., Torrey E.F., Bigelow L.B., Sanders R.D., et al., Corpus callosum curvature in schizophrenic twins, Biol. Psychiatry, 1990, 28, 83–84
Armstrong E., Curtis M., Buxhoeveden D.P., Fregoe C., Zilles K., Casanova M.F., et al., Cortical gyrification in the rhesus monkey: a test of the mechanical folding hypothesis, Cereb. Cortex, 1991, 1, 426–432
Casanova M.F., Daniel D.G., Goldberg T.E., Suddath R.L., Weinberger D.R., Shape analysis of the middle cranial fossa of schizophrenic patients: a computerized tomographic study, Schizophr. Res., 1989, 2, 333–338
Casanova M.F., Goldberg T.E., Suddath R.L., Daniel D.G., Rawlings R., Lloyd D.G., et al., Quantitative shape analysis of the temporal and prefrontal lobes in schizophrenic patients: a magnetic resonance image study, J. Neuropsychiatry Clin. Neurosci., 1990, 2, 363–372
Wang B., Shi C., A novel Fourier descriptor for shape retrieval, Fuzzy systems and knowledge discovery, Springer, New York, 2006, 822–825
Qiu A., Crocetti D., Adler M., Mahone E.M., Denckla M.B., Miller M.I., et al., Basal ganglia volume and shape in children with attention deficit hyperactivity disorder, Am. J. Psychiatry, 2009, 166, 74–82
Casanova M.F., El-Baz A.S., Mott M., Mannheim G.B., Hassan H., Fahmi R., et al., Reduced gyral window and corpus callosum size in autism: possible macroscopic correlates of a minicolumnopathy, J. Autism Dev. Disord., 2009, 39, 751–764
Bitter I., Kaufman A.E., Sato M., Penalized-distance volumetric skeleton algorithm, IEEE Trans. Vis. Comput. Graph., 2001, 7, 195–206
Gagvani N., Silver D., Parameter-controlled volume thinning, Graph. Models Image Process., 1999, 61, 149–164
Zhou Y., Toga A.W., Efficient skeletonization of volumetric objects, IEEE Trans. Vis. Comput. Graph., 1999, 5, 196–209
Tsao Y.F., Fu K.S., A parallel thinning algorithm for 3-D pictures, Computer Graphics and Image Processing, 1981, 17, 315–331
Ma C.M., A 3D fully parallel thinning algorithm for generating medial faces, Pattern Recognition Letters, 1995, 16, 83–87
Ma C.M., Sonka M., A fully parallel 3D thinning algorithm and its applications, Computer Vision and Image Understanding, 1996, 64, 420–433
Svensson S., Nyström I., Sanniti di Baja G., Curve skeletonization of surface-like objects in 3D images guided by voxel classification, Pattern Recognition Letters, 2002, 23, 1419–1426
Ge Y., Stelts D.R., Wang J., Vining D.J., Computing the centerline of a colon: a robust and efficient method based on 3D skeletons, J. Comput. Assist. Tomogr., 1999, 23, 786–794
Deschamps T., Cohen L.D., Fast extraction of minimal paths in 3D images and applications to virtual endoscopy, Med. Image Anal., 2001, 5, 281–299
Bouix S., Siddiqi K., Tannenbaum A., Flux driven fly throughs, in Computer Vision and Pattern Recognition. 2003, IEEE Computer Society. p. 449–454.
Attali D., Montanvert A., Computing and simplifying 2D and 3D continuous skeletons, Computer Vision and Image Understanding, 1997, 67, 261–273
Liu P.-C., Wu F.-C., Ma W.-C., Liang R.-H., Ouhyoung M., Automatic animation skeleton construction using repulsive force field, in Pacific Conference on Computer Graphics and Applications, J. Rokne, R. Klein, and W. Wang, Editors. 2003, IEEE. p. 409–413.
Hynd G.W., Hall J., Novey E.S., Eliopulos D., Black K., Gonzalez J.J., et al., Dyslexia and corpus callosum morphology, Arch. Neurol., 1995, 52, 32–38
Rumsey J.M., Casanova M.F., Mannheim G.B., Patronas N., DeVaughn N., Hamburger S.D., et al., Corpus callosum morphology, as measured with MRI, in dyslexic men, Biol. Psychiatry, 1996, 39, 769–775
Viola P., Wells W.M., III, Alignment by maximization of mutual information, Proceedings of the International Conference on Computer Vision, 1995, 5, 20–23
Hassouna M.S., Farag A.A., Variational curve skeletons using gradient vector flow, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31, 2257–2274
Tsai A., Yezzi A., Jr., Wells W., Tempany C., Tucker D., Fan A., et al., A shape-based approach to the segmentation of medical imagery using level sets, IEEE Trans. Med. Imaging, 2003, 22, 137–154
Cootes T.F., Taylor C.J., A mixture model for representing shape variation, Image and Vision Computing, 1999, 17, 567–573
Benjamini Y., Hochberg Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. B, 1995, 57, 289–300
Casanova M.F., Buxhoeveden D.P., Cohen M., Switala A.E., Roy E., Minicolumnar pathology in dyslexia, Ann. Neurol., 2002, 52, 108–110
El-Zehiry N.Y., Casanova M.F., Hassan H., Farag A.A. Effect of minicolumnar disturbance on dyslexic brains: an MRI study. in Biomedical imaging: Macro to nano. 2006: IEEE.
Abd El Munim H., Fahmi R., El-Zehiry N.Y., Farag A.A., Casanova M.F., Volumetric MRI analysis of dyslexic subjects using a level-set framework, In: J.S. Suri and A.A. Farag, (Eds.), Deformable models: Theory and biomaterial applications, Springer, New York, 2007, 461–492
Von Plessen K., Lundervold A., Duta N., Heiervang E., Klauschen F., Smievoll A.I., et al., Less developed corpus callosum in dyslexic subjects: a structural MRI study, Neuropsychologia, 2002, 40, 1035–1044
Robichon F., Habib M., Abnormal callosal morphology in male adult dyslexics: relationships to handedness and phonological abilities, Brain Lang., 1998, 62, 127–146
Habib M., The neurological basis of developmental dyslexia: an overview and working hypothesis, Brain, 2000, 123, 2373–2399
Robichon F., Bouchard P., Démonet J.-F., Habib M., Developmental dyslexia: re-evaluation of the corpus callosum in male adults, Eur. Neurol., 2000, 43, 233–237
Duara R., Kushch A., Gross-Glenn K., Barker W.W., Jallad B., Pascal S., et al., Neuroanatomic differences between dyslexic and normal readers on magnetic resonance imaging scans, Arch. Neurol., 1991, 48, 410–416
Cowell P.E., Jernigan T.L., Denenberg V.H., Tallal P., Language and learning impairment and prenatal risk: An MRI study of the corpus callosum and cerebral volume, J. Med. Speech-Lang. Pathol., 1995, 3, 1–13
Pennington B.F., Filipek P.A., Lefly D., Churchwell J., Kennedy D.N., Simon J.H., et al., Brain morphometry in reading-disabled twins, Neurology, 1999, 53, 723–729