Corpus callosum shape analysis with application to dyslexia

Walter de Gruyter GmbH - Tập 1 - Trang 124-130 - 2010
Manuel F. Casanova1, Ayman El-Baz2, Ahmed Elnakib2, Jay Giedd3, Judith M. Rumsey4, Emily L. Williams5, Andrew E. Switala1
1Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, USA
2Department of Bio-engineering, University of Louisville, Louisville, USA
3Child Psychiatry Branch, National Institute of Mental Health, Bethesda, USA
4Division of Adult Translational Research, National Institute of Mental Health, Bethesda, USA
5Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, USA

Tóm tắt

Morphometric studies of the corpus callosum suggest its involvement in a number of psychiatric conditions. In the present study we introduce a novel pattern recognition technique that offers a point-bypoint shape descriptor of the corpus callosum. The method uses arc lengths of electric field lines in order to avoid discontinuities caused by folding anatomical contours. We tested this technique by comparing the shape of the corpus callosum in a series of dyslexic men (n = 16) and age-matched controls (n = 14). The results indicate a generalized increase in size of the corpus callosum in dyslexia with a concomitant diminution at its rostral and caudal poles. The reported shape analysis and 2D-reconstruction provide information of anatomical importance that would otherwise passed unnoticed when analyzing size information alone.

Tài liệu tham khảo

Rilling J.K., Insel T.R., The primate neocortex in comparative perspective using magnetic resonance imaging, J. Hum. Evol., 1999, 37, 191–223 Olivares R., Michalland S., Aboitiz F., Cross-species and intraspecies morphometric analysis of the corpus callosum, Brain. Behav. Evol., 2000, 55, 37–43 Striedter G.F., Principles of brain evolution, Sinauer Associates, Sunderland, 2005 Johnson S.B., Casanova M.F., Interhemispheric connectivity: the evolution and nature of the corpus callosum, In: T.B. Westland and R.N. Calton, (Eds.), Handbook on white matter: Structure, function, and changes, Nova Science, Hauppauge, 2009, 3–15 Williams E.L., Casanova M.F., Autism and dyslexia: a spectrum of cognitive styles as defined by minicolumnar morphometry, Med. Hypotheses, 2009, in press Wolf M., Proust and the squid: The story and science of the reading brain, HarperCollins, New York, 2007 Vellutino F.R., Scanlon D.M., Phonological coding, phonological awareness and reading ability: evidence from a longitudinal and experimental study, Merrill-Palmer Q., 1987, 33, 321–363 Casanova M.F., Araque J., Giedd J., Rumsey J.M., Reduced brain size and gyrification in the brains of dyslexic patients, J. Child Neurol., 2004, 19, 275–281 Casanova M.F., Christensen J.D., Giedd J., Rumsey J.M., Garver D.L., Postel G.C., Magnetic resonance imaging study of brain asymmetries in dyslexic patients, J. Child Neurol., 2005, 20, 842–847 Casanova M.F., El-Baz A.S., Giedd J., Rumsey J.M., Switala A.E., Increased white matter gyral depth in dyslexia: implications for corticocortical connectivity, J. Autism Dev. Disord., 2009, in press Casanova M.F., Sanders R.D., Goldberg T.E., Bigelow L.B., Christison G., Torrey E.F., et al., Morphometry of the corpus callosum in monozygotic twins discordant for schizophrenia: a magnetic resonance imaging study, J. Neurol. Neurosurg. Psychiatry, 1990, 53, 416–421 Di Donato M., Dabic P., Castelvecchio S., Santambrogio C., Brankovic J., Collarini L., et al., Left ventricular geometry in normal and post-anterior myocardial infarction patients: sphericity index and ‘new’ conicity index comparisons, Eur. J. Cardiothorac. Surg., 2006, 29, S225–S230 Sabo E., Beck A.H., Montgomery E.A., Bhattacharya B., Meitner P., Wang J.Y., et al., Computerized morphometry as an aid in determining the grade of dysplasia and progression to adenocarcinoma in Barrett’s esophagus, Lab. Invest., 2006, 86, 1261–1271 Casanova M.F., Zito M., Goldberg T.E., Torrey E.F., Bigelow L.B., Sanders R.D., et al., Corpus callosum curvature in schizophrenic twins, Biol. Psychiatry, 1990, 28, 83–84 Armstrong E., Curtis M., Buxhoeveden D.P., Fregoe C., Zilles K., Casanova M.F., et al., Cortical gyrification in the rhesus monkey: a test of the mechanical folding hypothesis, Cereb. Cortex, 1991, 1, 426–432 Casanova M.F., Daniel D.G., Goldberg T.E., Suddath R.L., Weinberger D.R., Shape analysis of the middle cranial fossa of schizophrenic patients: a computerized tomographic study, Schizophr. Res., 1989, 2, 333–338 Casanova M.F., Goldberg T.E., Suddath R.L., Daniel D.G., Rawlings R., Lloyd D.G., et al., Quantitative shape analysis of the temporal and prefrontal lobes in schizophrenic patients: a magnetic resonance image study, J. Neuropsychiatry Clin. Neurosci., 1990, 2, 363–372 Wang B., Shi C., A novel Fourier descriptor for shape retrieval, Fuzzy systems and knowledge discovery, Springer, New York, 2006, 822–825 Qiu A., Crocetti D., Adler M., Mahone E.M., Denckla M.B., Miller M.I., et al., Basal ganglia volume and shape in children with attention deficit hyperactivity disorder, Am. J. Psychiatry, 2009, 166, 74–82 Casanova M.F., El-Baz A.S., Mott M., Mannheim G.B., Hassan H., Fahmi R., et al., Reduced gyral window and corpus callosum size in autism: possible macroscopic correlates of a minicolumnopathy, J. Autism Dev. Disord., 2009, 39, 751–764 Bitter I., Kaufman A.E., Sato M., Penalized-distance volumetric skeleton algorithm, IEEE Trans. Vis. Comput. Graph., 2001, 7, 195–206 Gagvani N., Silver D., Parameter-controlled volume thinning, Graph. Models Image Process., 1999, 61, 149–164 Zhou Y., Toga A.W., Efficient skeletonization of volumetric objects, IEEE Trans. Vis. Comput. Graph., 1999, 5, 196–209 Tsao Y.F., Fu K.S., A parallel thinning algorithm for 3-D pictures, Computer Graphics and Image Processing, 1981, 17, 315–331 Ma C.M., A 3D fully parallel thinning algorithm for generating medial faces, Pattern Recognition Letters, 1995, 16, 83–87 Ma C.M., Sonka M., A fully parallel 3D thinning algorithm and its applications, Computer Vision and Image Understanding, 1996, 64, 420–433 Svensson S., Nyström I., Sanniti di Baja G., Curve skeletonization of surface-like objects in 3D images guided by voxel classification, Pattern Recognition Letters, 2002, 23, 1419–1426 Ge Y., Stelts D.R., Wang J., Vining D.J., Computing the centerline of a colon: a robust and efficient method based on 3D skeletons, J. Comput. Assist. Tomogr., 1999, 23, 786–794 Deschamps T., Cohen L.D., Fast extraction of minimal paths in 3D images and applications to virtual endoscopy, Med. Image Anal., 2001, 5, 281–299 Bouix S., Siddiqi K., Tannenbaum A., Flux driven fly throughs, in Computer Vision and Pattern Recognition. 2003, IEEE Computer Society. p. 449–454. Attali D., Montanvert A., Computing and simplifying 2D and 3D continuous skeletons, Computer Vision and Image Understanding, 1997, 67, 261–273 Liu P.-C., Wu F.-C., Ma W.-C., Liang R.-H., Ouhyoung M., Automatic animation skeleton construction using repulsive force field, in Pacific Conference on Computer Graphics and Applications, J. Rokne, R. Klein, and W. Wang, Editors. 2003, IEEE. p. 409–413. Hynd G.W., Hall J., Novey E.S., Eliopulos D., Black K., Gonzalez J.J., et al., Dyslexia and corpus callosum morphology, Arch. Neurol., 1995, 52, 32–38 Rumsey J.M., Casanova M.F., Mannheim G.B., Patronas N., DeVaughn N., Hamburger S.D., et al., Corpus callosum morphology, as measured with MRI, in dyslexic men, Biol. Psychiatry, 1996, 39, 769–775 Viola P., Wells W.M., III, Alignment by maximization of mutual information, Proceedings of the International Conference on Computer Vision, 1995, 5, 20–23 Hassouna M.S., Farag A.A., Variational curve skeletons using gradient vector flow, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31, 2257–2274 Tsai A., Yezzi A., Jr., Wells W., Tempany C., Tucker D., Fan A., et al., A shape-based approach to the segmentation of medical imagery using level sets, IEEE Trans. Med. Imaging, 2003, 22, 137–154 Cootes T.F., Taylor C.J., A mixture model for representing shape variation, Image and Vision Computing, 1999, 17, 567–573 Benjamini Y., Hochberg Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. B, 1995, 57, 289–300 Casanova M.F., Buxhoeveden D.P., Cohen M., Switala A.E., Roy E., Minicolumnar pathology in dyslexia, Ann. Neurol., 2002, 52, 108–110 El-Zehiry N.Y., Casanova M.F., Hassan H., Farag A.A. Effect of minicolumnar disturbance on dyslexic brains: an MRI study. in Biomedical imaging: Macro to nano. 2006: IEEE. Abd El Munim H., Fahmi R., El-Zehiry N.Y., Farag A.A., Casanova M.F., Volumetric MRI analysis of dyslexic subjects using a level-set framework, In: J.S. Suri and A.A. Farag, (Eds.), Deformable models: Theory and biomaterial applications, Springer, New York, 2007, 461–492 Von Plessen K., Lundervold A., Duta N., Heiervang E., Klauschen F., Smievoll A.I., et al., Less developed corpus callosum in dyslexic subjects: a structural MRI study, Neuropsychologia, 2002, 40, 1035–1044 Robichon F., Habib M., Abnormal callosal morphology in male adult dyslexics: relationships to handedness and phonological abilities, Brain Lang., 1998, 62, 127–146 Habib M., The neurological basis of developmental dyslexia: an overview and working hypothesis, Brain, 2000, 123, 2373–2399 Robichon F., Bouchard P., Démonet J.-F., Habib M., Developmental dyslexia: re-evaluation of the corpus callosum in male adults, Eur. Neurol., 2000, 43, 233–237 Duara R., Kushch A., Gross-Glenn K., Barker W.W., Jallad B., Pascal S., et al., Neuroanatomic differences between dyslexic and normal readers on magnetic resonance imaging scans, Arch. Neurol., 1991, 48, 410–416 Cowell P.E., Jernigan T.L., Denenberg V.H., Tallal P., Language and learning impairment and prenatal risk: An MRI study of the corpus callosum and cerebral volume, J. Med. Speech-Lang. Pathol., 1995, 3, 1–13 Pennington B.F., Filipek P.A., Lefly D., Churchwell J., Kennedy D.N., Simon J.H., et al., Brain morphometry in reading-disabled twins, Neurology, 1999, 53, 723–729