Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking

BioEssays - Tập 27 Số 6 - Trang 625-632 - 2005
Vasily Rybakin1, Christoph S. Clemen2
1Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Germany
2Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph‐Stelzmann‐Str. 52, D‐50931 Köln, Germany.

Tóm tắt

Abstract

Coronins constitute an evolutionarily conserved family of WD‐repeat actin‐binding proteins, which can be clearly classified into two distinct groups based on their structural features. All coronins possess a conserved basic N‐terminal motif and three to ten WD repeats clustered in one or two core domains. Dictyostelium and mammalian coronins are important regulators of the actin cytoskeleton, while the fly Dpod1 and the yeast coronin proteins crosslink both actin and microtubules. Apart from that, several coronins have been shown to be involved in vesicular transport. C. elegans POD‐1 and Drosophila coro regulate the actin cytoskeleton, but also govern vesicular trafficking as indicated by mutant phenotypes. In both organisms, defects in cytoskeleton and trafficking lead to severe developmental defects ranging from abnormal cell division to aberrant formation of morphogen gradients. Finally, mammalian coronin 7 appears not to execute any cytoskeleton‐related functions, but rather participates in regulating Golgi trafficking. Here, we review recent data providing more insight into molecular mechanisms underlying the regulation of F‐actin structures, cytoskeletal rearrangements and intracellular membrane transport by coronin proteins and the way that they might link cytoskeleton with trafficking in development and disease. BioEssays 27:625–632, 2005. © 2005 Wiley Periodicals, Inc.

Từ khóa


Tài liệu tham khảo

10.1073/pnas.83.7.2162

10.1007/PL00000838

10.1110/ps.9.12.2470

10.1016/S0092-8674(00)80969-1

10.1016/S0962-8924(99)01620-7

10.1002/j.1460-2075.1991.tb04986.x

10.1089/dna.1998.17.779

10.1159/000015555

10.1074/jbc.M205136200

10.1046/j.1365-2443.2001.00416.x

10.1248/bpb.26.409

Cvrçková F, 2004, Evolutionary conserved modules in actin nucleation: lessons from Dictyostelium discoideum and plants, Protoplasma, 224, 15, 10.1007/s00709-004-0058-2

10.1016/S0960-9822(07)00539-8

10.1083/jcb.144.1.83

10.1083/jcb.200206113

10.1016/S0896-6273(03)00508-7

10.1016/0014-5793(95)00393-N

10.1093/intimm/dxh022

10.1242/jcs.111.19.2877

10.1248/bpb.25.837

10.1242/jcs.110.24.3071

10.1016/S0014-5793(00)02220-1

10.1046/j.1462-5822.2001.00155.x

10.1016/S0092-8674(00)80754-0

10.1046/j.1432-1033.2003.03396.x

10.1128/MCB.23.6.2162-2170.2003

10.1083/jcb.200406174

10.1091/mbc.e04-09-0774

10.1091/mbc.E02-06-0338

10.1038/ncb1206

10.1242/jcs.00117

10.1242/jcs.01034

10.1016/0092-8674(95)90414-X

10.1016/S0896-6273(00)80811-9

10.1091/mbc.E03-05-0315

10.1073/pnas.212381799

10.1093/emboj/16.7.1541

10.1101/gad.13.21.2838

10.1016/j.febslet.2004.07.066

10.1089/dna.1998.17.603

10.1016/S0021-9258(18)43884-7

Brown MR, 1989, Carbachol‐induced protein phosphorylation in parietal cells: regulation by [Ca2+], Am J Physiol, 257, G99

Chew CS, 1997, Ca2+‐independent protein kinase C isoforms may modulate parietal cell HCl secretion, Am J Physiol, 272, G246

10.1074/jbc.274.5.3017

10.1242/jcs.112.24.4705

10.1089/dna.1996.15.1049

10.1074/jbc.274.19.13322

10.1159/000078348

10.1111/j.1460-9568.2005.03917.x