Corner Boundary Value Problems

Complex Analysis and Operator Theory - Tập 9 - Trang 1157-1210 - 2014
Der-Chen Chang1,2, Tao Qian3, Bert-Wolfgang Schulze4
1Department of Mathematics and Statistics, Georgetown University, Washington, USA
2Department of Mathematics, Fu Jen Catholic University, Taiwan, Republic of China
3Faculty of Science and Technology, University of Macau, Macau, China Special Administartive Region
4Institute of Mathematics, University of Potsdam, Potsdam, Germany

Tóm tắt

Boundary value problems on a manifold with smooth boundary are closely related to the edge calculus where the boundary plays the role of an edge. The problem of expressing parametrices of Shapiro–Lopatinskij elliptic boundary value problems for differential operators gives rise to pseudo-differential operators with the transmission property at the boundary. However, there are interesting pseudo-differential operators without the transmission property, for instance, the Dirichlet-to-Neumann operator. In this case the symbols become edge-degenerate under a suitable quantisation, cf. Chang et al. (J Pseudo-Differ Oper Appl 5(2014):69–155, 2014). If the boundary itself has singularities, e.g., conical points or edges, then the symbols are corner-degenerate. In the present paper we study elements of the corresponding corner pseudo-differential calculus.

Tài liệu tham khảo

Boutet de Monvel, L.: Boundary problems for pseudo-differential operators. Acta Math. 126, 11–51 (1971) Calvo, D., Schulze, B.-W.: Edge symbolic structures of second generation. Math. Nachr. 282, 348–367 (2009) Chang, D.-C., Habal, N., Schulze, B.-W.: Quantisation on a manifold with singular edge, NCTS Preprints in Mathematics 2013-1-002, Taiwan, 2013. J. Pseudo-Differ Oper Appl. 4(3), 317–343 (2013) Chang, D.-C., Habal, N., Schulze, B.-W.: The edge algebra structure of the Zaremba problem, NCTS Preprints in Mathematics 2013–6-002, Taiwan. J. Pseudo-Differ. Oper. Appl. 5(2014), 69–155 (2014). doi:10.1007/s11868-013-0088-7 Dorschfeldt, Ch.: Algebras of Pseudo-Differential Operators Near Edge and Corner Singularities, Math. Res. 102, Akademie, Berlin (1998) Egorov, V., Schulze, B.-W.: Pseudo-Differential Operators, Singularities, Applications, Operator Theory: Advances and Applications, vol. 93. Birkhäuser, Basel (1997) Eskin, G.I.: Boundary value problems for elliptic pseudodifferential equations, Translations of Nauka, Moskva, 1973, Mathematical Monographs, American Mathematical Society vol. 52. Providence, Rhode Island (1980) Gil, J.B., Schulze, B.-W., Seiler, J.: Cone pseudodifferential operators in the edge symbolic calculus. Osaka J. Math. 37, 221–260 (2000) Habal, N., Schulze, B.-W.: Mellin quantisation in corner operators, operator theory, advances and applications. In: Karlovich, Y.I., et al. (eds.), “Operator Theory, Pseudo-Differential Equations, and Mathematical Physics”, The Vladimir Rabinovich Anniversary Volume, vol. 228, pp. 151–172. Birkhäuser, Basel (2013) Habal, N., Schulze, B.-W.: Holomorphic corner symbols. J. Pseudo-Differ. Oper. Appl. 2(4), 419–465 (2011) Harutjunjan, G., Schulze, B.-W.: Elliptic Mixed, Transmission and Singular Crack Problems. European Mathematical Society, Zürich (2008) Kapanadze, D., Schulze, B.-W.: Crack Theory and Edge Singularities. Kluwer Academic Publisher, Dordrecht (2003) Krainer, T.: On the inverse of parabolic systems of partial differential equations of general form in an infinite space-time cylinder, operator theory, advances and applications 138. In: Albeverio, S., Demuth, M., Schrohe, E., Schulze, B.-W. (eds.) Adv. in Partial Differential Equations “Parabolicity, Volterra Calculus, and Conical Singularities”, pp. 93–278. Birkhäuser, Basel (2002) Rempel, S., Schulze, B.-W.: Index Theory of Elliptic Boundary Problems. Akademie, Berlin (1982) Rempel, S., Schulze, B.-W.: Parametrices and boundary symbolic calculus for elliptic boundary problems without transmission property. Math. Nachr. 105, 45–149 (1982) Rempel, S., Schulze, B.-W.: Complete Mellin and Green symbolic calculus in spaces with conormal asymptotics. Ann. Glob. Anal. Geom. 4(2), 137–224 (1986) Rungrottheera, W., Schulze, B.-W.: Weighted spaces on corner manifolds. Complex Var. Elliptic Equ. 59(12):1706–1738 (2014). http://www.tandfonline.com/doi/full/10.1080/17476933.2013.876416 Schrohe, E., Schulze, B.-W.: Boundary value problems in Boutet de Monvel’s calculus for manifolds with conical singularities II. Ib: Proceedings of Adv. in Partial Differential Equations “Boundary Value Problems, Schrödinger Operators, Deformation Quantization”, pp. 70–205. Akademie Verlag, Berlin (1995) Schrohe, E., Schulze, B.-W.: Edge-degenerate boundary value problems on cones. In: Proceedings of Evolution Equations and their Applications in Physical and Life Sciences, Bad Herrenalb, Karlsruhe (2000) Schulze, B.-W.: Pseudo-differential operators on manifolds with edges, Teubner-Texte zur Mathematik, Symp. “Partial Differential Equations”, Holzhau 1988, 112, Leipzig, pp. 259–287 (1989) Schulze, B.-W.: Pseudo-Differential Operators on Manifolds with Singularities. North-Holland, Amsterdam (1991) Schulze, B.-W.: Boundary Value Problems and Singular Pseudo-Differential Operators. Wiley, Chichester (1998) Schulze, B.-W.: Operators with symbol hierarchies and iterated asymptotics. Publ. RIMS Kyoto Univ. 38(4), 735–802 (2002) Schulze, B.-W.: The iterative structure of the corner calculus, operator theory, advances and applications. In: Rodino, L., et al. (eds.) Pseudo-Differential Operators: Analysis, Application and Computations, vol. 213, pp. 79–103. Birkhäuser, Basel (2011) Schulze, B.-W., Seiler, J.: The edge algebra structure of boundary value problems. Ann. Glob. Anal. Geom. 22, 197–265 (2002) Schulze, B.-W., Tepoyan, L.: The singular functions of branching edge asymptotics, operator theory, advances and applications. In: Molahajloo, S., Pilipovič, S., Toft, J., Wong, M.W., (eds.) Pseudo-Differential Operators, Generalized Functions and Asymptotics, vol. 231, pp. 27–53. Birkhäuser, Basel (2013). arXiv:1202.0387v2 [math.AP] Schulze, B.-W., Wei, Y.: The Mellin-edge quantisation for corner operators. Complex Anal. Oper. Theory 8(4), 803–841 (2014). doi:10.1007/s11785-013-0289-3 Schulze, B.-W., Volpato, A.: Branching asymptotics on manifolds with edge, J. Pseudo-Differ. Oper. Appl. 1 (2010), 433–493 (2010). arXiv:1004.0332 [math.DG] Schulze, B.-W., Wong, M.W.: Mellin and Green operators of the corner calculus. J. Pseudo-Differ. Oper. Appl. 2(4), 467–507 (2011) Seiler, J.: Continuity of edge and corner pseudo-differential operators. Math. Nachr. 205, 163–182 (1999)