Coriolis effects on the stability of plane-front solidification of dilute Pb-Sn binary alloys

Metallurgical Transactions B - Tập 23 - Trang 73-80 - 1992
Alparslan Oztekin1, Arne J. Pearlstein1
1Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Urbana

Tóm tắt

The possibility of using steady uniform rotation about a vertical axis to suppress the onset of buoyancy-driven convection during solidification of a binary alloy is considered using a linear stability analysis. For Pb-Sn alloys, our results clearly show that the onset of convection in a horizontally unbounded layer can be suppressed significantly at modest rotation rates. Specifically, “plane-front” solidification is linearly stable at higher Sn concentrations in a rotating configuration than in a nonrotating one. The predicted inhibitory effects of rotation on convection are discussed in terms of previous experimental and theoretical studies of the effect of rotation on the onset of buoyancy-driven convection in single-component fluids heated from below and in binary fluids subject to thermal and solutal stratification.

Tài liệu tham khảo

W.W. Mullins and R.F. Sekerka:J. Appl. Phys., 1964, vol. 35, pp. 444–51. S.R. Coriell, M.R. Cordes, W.J. Boettinger, and R.F. Sekerka:J. Cryst. Growth, 1980, vol. 49, pp. 13–28. M.E. Glicksman, S.R. Coriell, and G.B. McFadden:Ann. Rev. Fluid Mech., 1986, vol. 18, pp. 307–35. R.F. Sekerka and S.R. Coriell: inProc. 6th Europ. Symp. on Material Sciences under Microgravity Conditions, Bordeaux, December 2–5, 1986, ESA-SP-256, pp. 3–11, 1987. M.G. Worster:J. Fluid Mech., 1991, vol. 224, pp. 335–59. S.H. Davis:J. Fluid Mech., 1990, vol. 212, pp. 241–62. H.E. Huppert:J. Fluid Mech., 1990, vol. 212, pp. 209–40. V.I. Polezhaev: inCrystals, Vol. 10, Growth and Defect Structures, H.C. Freyhardt, ed., Springer-Verlag, Berlin, 1988, pp. 87–141. G. Müller: inCrystals, Vol. 12, Crystal Growth from the Melt, H.C. Freyhardt, ed., Springer-Verlag, Berlin, 1988. A.F. Giamei and B.H. Kear:Metall. Trans., 1970, vol. 1, pp. 2185–92. D.R. Poirier, M.C. Flemings, R. Mehrabian, and H.J. Klein: inAdvances in Metal Processing, J.J. Burke, R. Mehrabian, and V. Weiss, eds., Plenum, New York, NY, 1981, pp. 277–317. S.D. Ridder, S. Kou, and R. Mehrabian:Metall. Trans. B, 1981, vol. 12B, pp. 435–47. A.L. Maples and D.R. Poirier:Metall. Trans. B, 1984, vol. 15B, pp. 163–72. J.I.D. Alexander, J. Ouazzani, and F. Rosenberger:J. Cryst. Growth, 1989, vol. 97, pp. 285–302. J.C. Heinrich, S. Felicelli, P. Nandapurkar, and D.R. Poirier:Metall. Trans. B, 1989, vol. 20B, pp. 883–91. J.C. Heinrich, S. Felicelli, P. Nandapurkar, and D.R. Poirier: AIAA Paper No. 89-0626, 1989. G. Müller:J. Cryst. Growth, 1990, vol. 99, pp. 1242–57. W. Weber, G. Neumann, and G. Müller:J. Cryst. Growth, 1990, vol. 100, pp. 145–58. H.P. Greenspan:The Theory of Rotating Fluids, Cambridge University Press, Cambridge, UK, 1968. E.O. Schulz-DuBois:J. Cryst. Growth, 1972, vol. 12, pp. 81–87. S. Kou: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1978. S. Kou, D.R. Poirier, and M.C. Flemings:Metall. Trans. B, 1978. vol. 9B, pp. 711–19. A.K. Sample and A. Hellawell:Metall. Trans. A, 1984, vol. 15A, pp. 2163–73. S. Chandrasekhar:Proc. R. Soc. London A, 1953, vol. 217, pp. 306–27. S. Chandrasekhar and D.D. Elbert:Proc. R. Soc. London A, 1955, vol. 231, pp. 198–210. P.P. Niiler and F.E. Bisshopp:J. Fluid Mech., 1965, vol. 22, pp. 753–61. S. Chandrasekhar:Hydrodynamic and Hydromagnetic Stability, Clarendon, Oxford, UK, 1961, pp. 76–85. G.M. Homsy and J.L. Hudson:J. Fluid Mech., 1969, vol. 35, pp. 33–52. G.M. Homsy and J.L. Hudson:J. Fluid Mech., 1971, vol. 45, pp. 353–73. G.M. Homsy and J.L. Hudson:J. Fluid Mech., 1971, vol. 48, pp. 605–24. G.M. Homsy and J.L. Hudson:Int. J. Heat Mass Transfer, 1971, vol. 14, pp. 1149–59. G.M. Homsy and J.L. Hudson:Appl. Sci. Res., 1972, vol. 26, pp. 53–67. A.J. Pearlstein:J. Fluid Mech., 1981, vol. 103, pp. 389–412. S. Sengupta and A.S. Gupta:Z. Angew. Math. Phys., 1971, vol. 22, pp. 906–14. A. Masuda:J. Oceanogr. Soc. Jpn., 1978, vol. 34, pp. 8–16. J.C. Antoranz and M.G. Velarde:Phys. Lett. A, 1978, vol. 65, pp. 377–79. J.C. Antoranz and M.G. Velarde:Phys. Fluids, 1979, vol. 22, pp. 1038–43. R.W. Schmitt and R.B. Lambert:J. Fluid Mech., 1979, vol. 90, pp. 449–63. N. Riahi:J. Phys. Soc. Jpn., 1983, vol. 52, pp. 2620–21. S. Worthem, E. Mollo-Christensen, and F. Ostapoff:J. Fluid Mech., 1983, vol. 133, pp. 297–319. J.K. Bhattacharjee:Phys. Fluids, 1988, vol. 31, pp. 2456–61. J.K. Bhattacharjee:Phys. Fluids, 1988, vol. 31, pp. 2462–66. J.K. Bhattacharjee:Phys. Rev. A, 1988, vol. 37, pp. 1368–70. Y. Nakagawa and P. Frenzen:Tellus, 1955, vol. 7, pp. 1–21. H.B. Keller:Numerical Solution of Two Point Boundary Value Problems, SIAM, Philadelphia, PA, 1976, pp. 49–58. A. Zebib:J. Comput. Phys., 1987, vol. 70, pp. 521–25. K. Bühler and H. Oertel:J. Fluid Mech., 1982, vol. 114, pp. 261–82. D. Fultz and Y. Nakagawa:Proc. R. Soc. London A, 1955, vol. 231, pp. 211–25. I.R. Goroff:Proc. R. Soc. London A, 1960, vol. 254, pp. 537–41. G. Veronis:J. Fluid Mech., 1959, vol. 5, pp. 401–35. G. Veronis:J. Fluid Mech., 1966, vol. 24, pp. 545–54. G. Veronis:J. Fluid Mech., 1968, vol. 31, pp. 113–39. S.M. Copley: University of Southern California, Los Angeles, CA, private communication, 1976. irrespective of the convergence angle. A sligh