Vi hạt vi cầu carbonyl sắt có lớp silica phủ và tính chất magnetorheological kháng axit

Springer Science and Business Media LLC - Tập 289 - Trang 1295-1298 - 2011
Ying Dan Liu1, Fei Fei Fang1, Hyoung Jin Choi1
1Department of Polymer Science and Engineering, Inha University, Incheon, South Korea

Tóm tắt

Chúng tôi đã tổng hợp hạt carbonyl sắt (CI) từ tính được phủ silica thông qua phương pháp Stöber đã được cải tiến, trong đó các hạt CI được xử lý trước bằng một tác nhân gắn kết để tăng cường khả năng kết dính của tiền chất silica. Các hạt vi cầu từ tính được tổng hợp đã được đặc trưng hóa bằng kính hiển vi điện tử quét, phổ phát xạ tia X năng lượng tán xạ, và thử nghiệm chống axit trong dung dịch HCl. Hạt CI phủ silica không chỉ cho thấy khả năng ướt tốt hơn với dầu silicone kèm theo độ nhớt cắt tắt thấp hơn, làm cho nó trở thành một chất lỏng magnetorheological tốt hơn dưới trường điện từ mà còn có tính chất kháng axit được cải thiện.

Từ khóa

#hạt vi cầu carbonyl sắt #silica phủ #magnetorheology #đặc trưng hóa #kháng axit

Tài liệu tham khảo

Ginder JM, Davis C (1994) Shear stresses in magnetorheological fluid-role of magnetic saturation. Appl Phys Lett 65:3410–3412 Park BJ, Fang FF, Choi HJ (2010) Magnetorheology: materials and application. Soft Matter 6:5246–5253 Ulicny JC, Snavely KS, Golden MA, Klingenberg DJ (2010) Enhancing magnetorheology with nonmagnetizable particles. Appl Phys Lett 96:231903 Rwei SP, Lee HY, Yoo SD, Wang LY, Lin JG (2005) Magnetorheological characteristics of aqueous suspensions that contain Fe3O4 nanoparticles. Colloid Polymer Sci 283:1253–1258 Andrei OE, Bica I (2009) Some mechanisms concerning the electrical conductivity of magnetorheological suspensions in magnetic field. J Ind Eng Chem 15:573–577 Zhang X, Li W, Gong X (2010) Thixotropy of MR shear-thickening fluids. Smart Mater Struct 19:125012 Choi HJ, Jhon MS (2009) Electrorheology of polymers and nanocomposites. Soft Matter 5:1562–1567 Liu F, Xu G, Wu J, Cheng Y, Guo J, Cui P (2010) Synthesis and electrorheological properties of oxalate group-modified amorphous titanium oxide nanoparticles. Colloid Polymer Sci 288:1739–1744 Cheng Q, Pavlinek V, He Y, Li C, Saha P (2009) Electrorheological characteristics of polyaniline/titanate composite nanotube suspensions. Colloid Polymer Sci 287:435–441 Kim IH, Jung HJ, Koo JH (2010) Experimental evaluation of a self-powered smart damping system in reducing vibration of a full-scale stay cable. Smart Mater Struct 19:115027 Genc S, Phule PP (2002) Rheological properties of magnetorheological fluids. Smart Mater Struct 11:140–146 Lim ST, Cho MS, Jang IB, Choi HJ, Jhon MS (2004) Magnetorheology of carbonyl-iron suspensions with submicron-sized filler. IEEE Trans Magn 40:3033–3035 Jonsdottir F, Gudmundsson KH, Dijkman TB, Thorsteinsson F, Gutfleischs O (2010) Rheology of perfluorinated polyether-based MR fluids with nanoparticles. J Intell Mater Syst Struct 21:1051–1060 Wereley NM, Chaudhuri A, Yoo JH, John S, Kotha S, Suggs A, Radhakrishnan R, Love BJ, Sudarshan TS (2006) Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale. J Intell Mater Syst Struct 17:393–401 Jiang W, Zhu H, Guo C, Li J, Xue Q, Feng J, Gong X (2010) Poly(methyl methacrylate)-coated carbonyl iron particles and their magnetorheological characteristics. Polym Int 59:879–883 Ko SW, Lim JY, Park BJ, Yang MS, Choi HJ (2009) Magnetorheological carbonyl iron particles doubly wrapped with polymer and carbon nanotube. J Appl Phys 105:07E703 Fang FF, Choi HJ, Choi WS (2010) Two-layer coating with polymer and carbon nanotube on magnetic carbonyl iron particle and its magnetorheology. Colloid Polymer Sci 288:359–363 Shafrir SN, Romanofsky HJ, Skarlinski M, Wang M, Miao C, Salzman S, Chartier T, Mici J, Lambropoulos JC, Shen R, Yang H, Jacobs SD (2009) Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics. Appl Opt 48:6797–6810 Bombard AJF, Knobel M, Alcântara MR (2007) Phosphate coating on the surface of carbonyl iron powder and its effect in magnetorheological suspensions. Int J Mod Phys B 21:4858–4867 Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69 Bălău O, Bica D, Koneracka M, Kopčansky P, Susan-Resiga D, Vékás L (2002) Rheological and magnetorheological behavior of some magnetic fluids on polar and nonpolar carrier liquids. Int J Mod Phys B 16:2765–2771 Ahmadkhanlou F, Mahboob M, Bechtel S, Washington G (2010) An improved model for magnetorheological fluid-based actuators and sensors. J Intell Mater Syst Struct 21:3–18 Fang FF, Choi HJ (2010) Fabrication of multiwalled carbon nanotube-wrapped magnetic carbonyl iron microspheres and their magnetorheology. Colloid Polymer Sci 288:79–84 Park BJ, Hong MK, Choi HJ (2009) Atom transfer radical polymerized PMMA/magnetite nanocomposites and their magnetorheology. Colloid Polymer Sci 287:501–504