Core-shell structured AP/Fe3O4 composite with enhanced catalytic thermal decomposition property: Fabrication and mechanism study

Chemical Engineering Science - Tập 247 - Trang 116899 - 2022
Shao-Bo Cao1,2, Lin-Yu Zhou1,2, Cai Zhang1, Liang-Liang Zhang1, Guo-Lei Xiang3, Jie-Xin Wang1,2, Jian-Feng Chen1,2
1Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
2State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, PR China
3State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China

Tài liệu tham khảo

AlizadehGheshlaghi, 2012, Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate, Powder Technol., 217, 330, 10.1016/j.powtec.2011.10.045 Bharathi, 1999, Direct synthesis and characterization of gold and other noble metal nanodispersions in sol−gel-derived organically modified silicates, Langmuir, 15, 1929, 10.1021/la980490x Blaine, 2012, Homer Kissinger and the Kissinger equation, Thermochim. Acta, 540, 1, 10.1016/j.tca.2012.04.008 Boldyrev, 2006, Thermal decomposition of ammonium perchlorate, Thermochim. Acta, 443, 1, 10.1016/j.tca.2005.11.038 Cao, 2019, Facile and scalable preparation of α-Fe2O3 nanoparticle by high-gravity reactive precipitation method for catalysis of solid propellants combustion, Powder Technol., 353, 444, 10.1016/j.powtec.2019.05.062 Chen, 2008, Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate, J. Alloys Compd., 464, 532, 10.1016/j.jallcom.2007.10.058 Chen, 2015, Effects of different phases of MnO2 nanorods on the catalytic thermal decomposition of ammonium perchlorate, Ceram. Int., 41, 7054, 10.1016/j.ceramint.2015.02.011 Du, 2020, High-gravity-assisted preparation of aqueous dispersions of monodisperse palladium nanocrystals as pseudohomogeneous catalyst for highly efficient nitrobenzene reduction, Chem. Eng. J., 382, 10.1016/j.cej.2019.122883 Du, 2020, ZnO nanodispersion as pseudohomogeneous catalyst for alcoholysis of polyethylene terephthalate, Chem. Eng. Sci., 220, 10.1016/j.ces.2020.115642 Dudarev, 1998, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B, 57, 1505, 10.1103/PhysRevB.57.1505 Elbasuney, 2019, Ammonium perchlorate encapsulated with TiO2 nanocomposite for catalyzed combustion reactions, J. Inorg. Organomet. Polym. Mater., 29, 1349, 10.1007/s10904-019-01099-y Eslami, 2016, Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate, Mater. Chem. Phys., 181, 12, 10.1016/j.matchemphys.2016.05.064 Fertassi, 2016, Catalytic effect of CuO nanoplates, a graphene (G)/CuO nanocomposite and an Al/G/CuO composite on the thermal decomposition of ammonium perchlorate, RSC Adv., 6, 74155, 10.1039/C6RA13261H Ge, 2018, Preparation and characterization of ultrafine Fe-O compound/ammonium perchlorate nanocomposites via in-suit growth method, J. Solid State Chem., 258, 138, 10.1016/j.jssc.2017.10.012 Goedecker, 1996, Separable dual-space Gaussian pseudopotentials, Phys. Rev. B, 54, 1703, 10.1103/PhysRevB.54.1703 Grimme, 2010, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 132, 10.1063/1.3382344 Guang, 2019, Controllable synthesis of transparent dispersions of monodisperse anatase-TiO2 nanoparticles and nanorods, Mater. Chem. Phys., 224, 100, 10.1016/j.matchemphys.2018.12.012 Hao, 2016, Cu-Cr-Pb nanocomposites, J. Therm. Anal. Calorim., 123, 263, 10.1007/s10973-015-4924-2 Hao, 2017, Facile preparation of AP/Cu(OH)2 core-shell nanocomposites and its thermal decomposition behavior, Propellants Explos. Pyrotech., 42, 947, 10.1002/prep.201600209 Hartwigsen, 1998, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn, Phys. Rev. B, 58, 3641, 10.1103/PhysRevB.58.3641 He, 2019, High-gravity-assisted scalable synthesis of zirconia nanodispersion for light emitting diodes encapsulation with enhanced light extraction efficiency, Chem. Eng. Sci., 195, 1, 10.1016/j.ces.2018.11.036 Hu, 2020, Fabrication and mechanistic study of AP/nAl/PTFE spherical encapsulated energetic materials with enhanced combustion performance, Chem. Eng. Sci., 222, 10.1016/j.ces.2020.115701 Kapoor, 2009, Nanocrystalline transition metal oxides as catalysts in the thermal decomposition of ammonium perchlorate, Propellants Explos. Pyrotech., 34, 351, 10.1002/prep.200800025 Keservani, R., Sharma, A.K., 2018. Nanodispersions for Drug Delivery. Kreitz, K., Petersen, E., Reid, D., Seal, S., 2011. Relative dispersion of catalytic nanoparticle additives and AP particles in composite solid propellant and the effect on burning rate, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics. Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169 Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758 Li, 2014, Thermal decomposition properties of double-base propellant and ammonium perchlorate, J. Therm. Anal. Calorim., 115, 887, 10.1007/s10973-013-3266-1 Ma, 2020, Preparation and characterization of ultra-fine ammonium perchlorate crystals using a microfluidic system combined with ultrasonication, Chem. Eng. J., 126516 Ma, 2012, Preparation and characterization of Fe2O3/ammonium perchlorate (AP) nanocomposites through ceramic membrane anti-solvent crystallization, Propellants Explos. Pyrotech., 37, 183, 10.1002/prep.201000132 Neeft, 1996, Metal oxides as catalysts for the oxidation of soot, Chem. Eng. J. Biochem. Eng. J., 64, 295, 10.1016/S0923-0467(96)03138-7 Pai Verneker, 1977, Sublimation and thermal decomposition of ammonium perchlorate, Chem. Eng. Sci., 32, 1114, 10.1016/0009-2509(77)80152-8 Park, 2010, Silane treatment of Fe3O4 and its effect on the magnetic and wear properties of Fe3O4/epoxy nanocomposites, Appl. Surf. Sci., 256, 6945, 10.1016/j.apsusc.2010.04.110 Pelster, 1999, Nanodispersions of conducting particles: preparation, microstructure and dielectric properties, Colloid. Polym. Sci., 277, 2, 10.1007/s003960050361 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Radovic, 1983, Importance of catalyst dispersion in the gasification of lignite chars, J. Catal., 82, 382, 10.1016/0021-9517(83)90205-1 Rajoriya, G., Vijay, C., Ramakrishna, P.A., 2016. Numerical method to estimate thermal conductivity of a model composite propellant. In: 52nd AIAA/SAE/ASEE Joint Propulsion Conference. American Institute of Aeronautics and Astronautics. Reid, 2007, Nanoscale additives tailor energetic materials, Nano Lett., 7, 2157, 10.1021/nl0625372 Shaikhutdinova, 2018, Design of nanodispersed magnetoactive systems for targeted drug delivery, Nanotechnol. Russia, 13, 317, 10.1134/S199507801803014X Shariffa, 2016, Producing a lycopene nanodispersion: the effects of emulsifiers, Food Bioprod. Process., 98, 210, 10.1016/j.fbp.2016.01.014 Smith, 1960, Burning rates of solid propellants, AICHE J., 6, 299, 10.1002/aic.690060225 Solymosi, 1961, Thermal decomposition of ammonium perchlorate in presence of zinc oxide, Nature, 192, 64, 10.1038/192064a0 Śpiewak, 2021, Effect of K, Na and Ca-based catalysts on the steam gasification reactions of coal. Part I: Type and amount of one-component catalysts, Chem. Eng. Sci., 229 Sun, 2008, FTIR and thermal analysis studies of the effects of additives on thermal decomposition of AP/Al, Spectrosc. Spectr. Anal., 28, 75 VandeVondele, 2005, Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, Comput. Phys. Commun., 167, 103, 10.1016/j.cpc.2004.12.014 Wang, 2015, Transparent aqueous Mg(OH)2 nanodispersion for transparent and flexible polymer film with enhanced flame-retardant property, Ind. Eng. Chem. Res., 54, 12805, 10.1021/acs.iecr.5b03172 Wang, 2014, Catalytic activity of magnetite with different shapes for the thermal decomposition of ammonium perchlorate, Chem. Lett., 43, 1554, 10.1246/cl.140602 Wang, 2020, Self-cleaning and air purification performance of Portland cement paste with low dosages of nanodispersed TiO2 coatings, Constr Build Materi, 263 Xia, 2018, Synthesis of transparent aqueous ZrO2 nanodispersion with a controllable crystalline phase without modification for a high-refractive-index nanocomposite film, Langmuir, 34, 6806, 10.1021/acs.langmuir.8b00160 Xiao, 2018, The high efficient catalytic properties for thermal decomposition of ammonium perchlorate using mesoporous ZnCo2O4 rods synthesized by oxalate co-precipitation method, Sci. Rep., 8, 7571, 10.1038/s41598-018-26022-2 Yan, 2016, Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions, Prog. Energy Combust. Sci., 57, 75, 10.1016/j.pecs.2016.08.002 Yang, 2011, Effect of the dispersibility of nano-CuO catalyst on heat releasing of AP/HTPB propellant, J. Nanomater., 2011, 10.1155/2011/180896 Yin, 2019, High-gravity-assisted synthesis of aqueous nanodispersions of organic fluorescent dyes for counterfeit labeling, AICHE J., 65, 10.1002/aic.16714 Zhang, 2021, Study of H2AzTO-based energetic metal-organic frameworks for catalyzing the thermal decomposition of ammonium perchlorate, Chem. Eng. J., 404, 10.1016/j.cej.2020.126287 Zhang, 2016, Facile fabrication of Fe3O4 and Co3O4 microspheres and their influence on the thermal decomposition of ammonium perchlorate, J. Alloys Compd., 674, 259, 10.1016/j.jallcom.2016.03.071 Zhou, 2020, Facet effect of Co3O4 nanocatalysts on the catalytic decomposition of ammonium perchlorate, J. Hazard. Mater., 392, 10.1016/j.jhazmat.2020.122358