Core-shell structured AP/Fe3O4 composite with enhanced catalytic thermal decomposition property: Fabrication and mechanism study
Tài liệu tham khảo
AlizadehGheshlaghi, 2012, Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate, Powder Technol., 217, 330, 10.1016/j.powtec.2011.10.045
Bharathi, 1999, Direct synthesis and characterization of gold and other noble metal nanodispersions in sol−gel-derived organically modified silicates, Langmuir, 15, 1929, 10.1021/la980490x
Blaine, 2012, Homer Kissinger and the Kissinger equation, Thermochim. Acta, 540, 1, 10.1016/j.tca.2012.04.008
Boldyrev, 2006, Thermal decomposition of ammonium perchlorate, Thermochim. Acta, 443, 1, 10.1016/j.tca.2005.11.038
Cao, 2019, Facile and scalable preparation of α-Fe2O3 nanoparticle by high-gravity reactive precipitation method for catalysis of solid propellants combustion, Powder Technol., 353, 444, 10.1016/j.powtec.2019.05.062
Chen, 2008, Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate, J. Alloys Compd., 464, 532, 10.1016/j.jallcom.2007.10.058
Chen, 2015, Effects of different phases of MnO2 nanorods on the catalytic thermal decomposition of ammonium perchlorate, Ceram. Int., 41, 7054, 10.1016/j.ceramint.2015.02.011
Du, 2020, High-gravity-assisted preparation of aqueous dispersions of monodisperse palladium nanocrystals as pseudohomogeneous catalyst for highly efficient nitrobenzene reduction, Chem. Eng. J., 382, 10.1016/j.cej.2019.122883
Du, 2020, ZnO nanodispersion as pseudohomogeneous catalyst for alcoholysis of polyethylene terephthalate, Chem. Eng. Sci., 220, 10.1016/j.ces.2020.115642
Dudarev, 1998, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B, 57, 1505, 10.1103/PhysRevB.57.1505
Elbasuney, 2019, Ammonium perchlorate encapsulated with TiO2 nanocomposite for catalyzed combustion reactions, J. Inorg. Organomet. Polym. Mater., 29, 1349, 10.1007/s10904-019-01099-y
Eslami, 2016, Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate, Mater. Chem. Phys., 181, 12, 10.1016/j.matchemphys.2016.05.064
Fertassi, 2016, Catalytic effect of CuO nanoplates, a graphene (G)/CuO nanocomposite and an Al/G/CuO composite on the thermal decomposition of ammonium perchlorate, RSC Adv., 6, 74155, 10.1039/C6RA13261H
Ge, 2018, Preparation and characterization of ultrafine Fe-O compound/ammonium perchlorate nanocomposites via in-suit growth method, J. Solid State Chem., 258, 138, 10.1016/j.jssc.2017.10.012
Goedecker, 1996, Separable dual-space Gaussian pseudopotentials, Phys. Rev. B, 54, 1703, 10.1103/PhysRevB.54.1703
Grimme, 2010, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 132, 10.1063/1.3382344
Guang, 2019, Controllable synthesis of transparent dispersions of monodisperse anatase-TiO2 nanoparticles and nanorods, Mater. Chem. Phys., 224, 100, 10.1016/j.matchemphys.2018.12.012
Hao, 2016, Cu-Cr-Pb nanocomposites, J. Therm. Anal. Calorim., 123, 263, 10.1007/s10973-015-4924-2
Hao, 2017, Facile preparation of AP/Cu(OH)2 core-shell nanocomposites and its thermal decomposition behavior, Propellants Explos. Pyrotech., 42, 947, 10.1002/prep.201600209
Hartwigsen, 1998, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn, Phys. Rev. B, 58, 3641, 10.1103/PhysRevB.58.3641
He, 2019, High-gravity-assisted scalable synthesis of zirconia nanodispersion for light emitting diodes encapsulation with enhanced light extraction efficiency, Chem. Eng. Sci., 195, 1, 10.1016/j.ces.2018.11.036
Hu, 2020, Fabrication and mechanistic study of AP/nAl/PTFE spherical encapsulated energetic materials with enhanced combustion performance, Chem. Eng. Sci., 222, 10.1016/j.ces.2020.115701
Kapoor, 2009, Nanocrystalline transition metal oxides as catalysts in the thermal decomposition of ammonium perchlorate, Propellants Explos. Pyrotech., 34, 351, 10.1002/prep.200800025
Keservani, R., Sharma, A.K., 2018. Nanodispersions for Drug Delivery.
Kreitz, K., Petersen, E., Reid, D., Seal, S., 2011. Relative dispersion of catalytic nanoparticle additives and AP particles in composite solid propellant and the effect on burning rate, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics.
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758
Li, 2014, Thermal decomposition properties of double-base propellant and ammonium perchlorate, J. Therm. Anal. Calorim., 115, 887, 10.1007/s10973-013-3266-1
Ma, 2020, Preparation and characterization of ultra-fine ammonium perchlorate crystals using a microfluidic system combined with ultrasonication, Chem. Eng. J., 126516
Ma, 2012, Preparation and characterization of Fe2O3/ammonium perchlorate (AP) nanocomposites through ceramic membrane anti-solvent crystallization, Propellants Explos. Pyrotech., 37, 183, 10.1002/prep.201000132
Neeft, 1996, Metal oxides as catalysts for the oxidation of soot, Chem. Eng. J. Biochem. Eng. J., 64, 295, 10.1016/S0923-0467(96)03138-7
Pai Verneker, 1977, Sublimation and thermal decomposition of ammonium perchlorate, Chem. Eng. Sci., 32, 1114, 10.1016/0009-2509(77)80152-8
Park, 2010, Silane treatment of Fe3O4 and its effect on the magnetic and wear properties of Fe3O4/epoxy nanocomposites, Appl. Surf. Sci., 256, 6945, 10.1016/j.apsusc.2010.04.110
Pelster, 1999, Nanodispersions of conducting particles: preparation, microstructure and dielectric properties, Colloid. Polym. Sci., 277, 2, 10.1007/s003960050361
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Radovic, 1983, Importance of catalyst dispersion in the gasification of lignite chars, J. Catal., 82, 382, 10.1016/0021-9517(83)90205-1
Rajoriya, G., Vijay, C., Ramakrishna, P.A., 2016. Numerical method to estimate thermal conductivity of a model composite propellant. In: 52nd AIAA/SAE/ASEE Joint Propulsion Conference. American Institute of Aeronautics and Astronautics.
Reid, 2007, Nanoscale additives tailor energetic materials, Nano Lett., 7, 2157, 10.1021/nl0625372
Shaikhutdinova, 2018, Design of nanodispersed magnetoactive systems for targeted drug delivery, Nanotechnol. Russia, 13, 317, 10.1134/S199507801803014X
Shariffa, 2016, Producing a lycopene nanodispersion: the effects of emulsifiers, Food Bioprod. Process., 98, 210, 10.1016/j.fbp.2016.01.014
Smith, 1960, Burning rates of solid propellants, AICHE J., 6, 299, 10.1002/aic.690060225
Solymosi, 1961, Thermal decomposition of ammonium perchlorate in presence of zinc oxide, Nature, 192, 64, 10.1038/192064a0
Śpiewak, 2021, Effect of K, Na and Ca-based catalysts on the steam gasification reactions of coal. Part I: Type and amount of one-component catalysts, Chem. Eng. Sci., 229
Sun, 2008, FTIR and thermal analysis studies of the effects of additives on thermal decomposition of AP/Al, Spectrosc. Spectr. Anal., 28, 75
VandeVondele, 2005, Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, Comput. Phys. Commun., 167, 103, 10.1016/j.cpc.2004.12.014
Wang, 2015, Transparent aqueous Mg(OH)2 nanodispersion for transparent and flexible polymer film with enhanced flame-retardant property, Ind. Eng. Chem. Res., 54, 12805, 10.1021/acs.iecr.5b03172
Wang, 2014, Catalytic activity of magnetite with different shapes for the thermal decomposition of ammonium perchlorate, Chem. Lett., 43, 1554, 10.1246/cl.140602
Wang, 2020, Self-cleaning and air purification performance of Portland cement paste with low dosages of nanodispersed TiO2 coatings, Constr Build Materi, 263
Xia, 2018, Synthesis of transparent aqueous ZrO2 nanodispersion with a controllable crystalline phase without modification for a high-refractive-index nanocomposite film, Langmuir, 34, 6806, 10.1021/acs.langmuir.8b00160
Xiao, 2018, The high efficient catalytic properties for thermal decomposition of ammonium perchlorate using mesoporous ZnCo2O4 rods synthesized by oxalate co-precipitation method, Sci. Rep., 8, 7571, 10.1038/s41598-018-26022-2
Yan, 2016, Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions, Prog. Energy Combust. Sci., 57, 75, 10.1016/j.pecs.2016.08.002
Yang, 2011, Effect of the dispersibility of nano-CuO catalyst on heat releasing of AP/HTPB propellant, J. Nanomater., 2011, 10.1155/2011/180896
Yin, 2019, High-gravity-assisted synthesis of aqueous nanodispersions of organic fluorescent dyes for counterfeit labeling, AICHE J., 65, 10.1002/aic.16714
Zhang, 2021, Study of H2AzTO-based energetic metal-organic frameworks for catalyzing the thermal decomposition of ammonium perchlorate, Chem. Eng. J., 404, 10.1016/j.cej.2020.126287
Zhang, 2016, Facile fabrication of Fe3O4 and Co3O4 microspheres and their influence on the thermal decomposition of ammonium perchlorate, J. Alloys Compd., 674, 259, 10.1016/j.jallcom.2016.03.071
Zhou, 2020, Facet effect of Co3O4 nanocatalysts on the catalytic decomposition of ammonium perchlorate, J. Hazard. Mater., 392, 10.1016/j.jhazmat.2020.122358