Cord Blood Stem Cells: A Review of Potential Neurological Applications

Springer Science and Business Media LLC - Tập 4 Số 4 - Trang 269-274 - 2008
David T. Harris1
1University of Arizona

Tóm tắt

Từ khóa


Tài liệu tham khảo

Rubinstein, P. (2006). Why cord blood? Human Immunology, 67, 398–404.

Rubinstein, P., Rosenfield, R. E., Adamson, J. W., et al. (1993). Stored placental blood for unrelated bone marrow reconstitution. Blood, 81, 1679–1690.

Gluckman, E., Rocha, V., & Boyer-Chammard, A. (1997). Outcome of cord-blood transplantation from related and unrelated donors. New England Journal of Medicine, 337, 373–381.

Harris, D. T., Badowski, M., Ahmad, N., & Gaballa, M. (2008). The potential of cord blood stem cells for use in regenerative medicine. Expert Opinion on Biological Therapy, 7(9), 1311–1322.

Harris, D. T., & Rogers, I. (2007). Umbilical cord blood: a unique source of pluripotent stem cells for regenerative medicine. Current Stem Cell Research & Therapy, 2, 301–309.

Seaberg, R. M., & van der Kooy, D. (2002). Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. Journal of Neuroscience, 22, 1784–1793.

Hill, E., Boontheekul, T., & Mooney, D. J. (2006). Regulating activation of transplanted cells controls tissue regeneration. Proceedings of the National Academy of Sciences of the United States of America, 103, 2494–2449.

Tropepe, V., Coles, B. L., Chiasson, B. J., Horsford, D. J., Elia, A. J., McInnes, R. R., et al. (2000). Retinal stem cells in the adult mammalian eye. Science, 287, 2032–2036.

Seaberg, R. M., Smukler, S. R., Kieffer, T. J., Enikolopov, G., Asghar, Z., Wheeler, M. B., et al. (2004). Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nature Biotechnology, 22, 1115–1124.

Toma, J. G., Akhavan, M., Fernandes, K. J., Barnabe-Heider, F., Sadikot, A., Kaplan, D. R., et al. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology, 3, 778–784.

Yoon, B. I., Choi, Y. K., & Kim, D. Y. (2004). Differentiation processes of oval cells into hepatocytes: proposals based on morphological and phenotypical traits in carcinogen-treated hamster liver. Journal of Comparative Pathology, 131, 1–9.

Kogler, G., Sensken, S., & Wernet, P. (2006). Comparative generation and characterization of pluripotent unrestricted somatic stem cells with mesenchymal stem cells from human cord blood. Experimental Hematology, 34(11), 1589–95.

McGuckin, C., Forraz, N., Baradez, M. O., et al. (2005). Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Proliferation, 38, 245–255.

Copeland, N., Harris, D., & Gaballa, M. A. (2008). Human umbilical cord blood stem cells are a beneficial therapy in experimental models of myocardial infarction and stroke. Clinical Medicine: Cardiology, in press.

Sunkomat, J. N. E, Goldman, S., Harris, D. T., et al. (2008). Cord blood-derived MNCs delivered intracoronary contribute differently to vascularization compared to CD34+ cells in the rat model of acute ischemia. Manuscript submitted for publication.

Harris, D. T., He, X., Camacho, D., Gonzalez, V., & Nichols, J. C. (2006). The potential of cord blood stem cells for use in tissue engineering of the eye, stem cells & regenerative medicine, Jan 23–25, 2006, San Francisco, Abstract

Harris, D. T., He, X., Badowski, M., & Nicols, J. C. (2008). Regenerative medicine of the eye: a short review. In N. Levicar, N. A. Habib, I. Dimarakis, & M. Y. Gordon (Eds.), Stem cell repair & regeneration(vol. 3). London: Imperial College Press.

Nichols, J. C., He, X., & Harris, D. T. (2005). Differentiation of Cord Blood Stem Cells Into Corneal Epithelium. Invest Ophthalmol Vis Sci, 46, E-Abstract 4772.

Mcguckin, C. P., Forraz, N., Allouard, Q., & Pettengell, R. (2004). Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro. Experimental Cell Research, 295, 350–359.

Jang, Y. K., Park, J. J., Lee, M. C., et al. (2004). Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. Journal of Neuroscience Research, 75, 573–584.

Buzanska, L., Jurga, M., Stachowiak, E. K., Stachowiak, M. K., & Domanska-Janik, K. (2006). Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Develop, 15, 391–406.

Harris, D. T., Ahmad, N., Saxena, S. K. et al. (2005). The Potential of Cord Blood Stem Cells for Use in Tissue Engineering. Abstract, Intl. TESi meeting, Shanghai, China, Oct 2005

Rogers, I., Yamanaka, N., Bielecki, R., Wong, C. J., Chua, S., Yuen, S., et al. (2007). Identification and analysis of in vitro cultured CD45-positive cells capable of multi-lineage differentiation. Experimental Cell Research, 313, 1839–1852.

Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., et al. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113, 631–642.

Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

Tippett, P., Andrews, P. W., Knowles, B. B., Solter, D., & Goodfellow, P. N. (1986). Red cell antigens P (globoside) and Luke: identification by monoclonal antibodies defining the murine stage-specific embryonic antigens -3 and -4 (SSEA-3 and SSEA-4). Vox Sang, 51, 53–56.

Yu, M., Xiao, Z., Shen, L., & Li, L. (2004). Mid-trimester fetal blood-derived adherent cells share characteristics similar to mesenchymal stem cells but full-term umbilical cord blood does not. British Journal of Haematology, 124, 666–675.

Schmidt, D., Breymann, Y., Weber, A., et al. (2004). Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Soc Thorac Surg, 78, 2094–2098.

Chen, J., Sanberg, P. R., Li, Y., et al. (2001). Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke, 32, 2682–2688.

Willing, A. E., Lixian, J., Milliken, M., et al. (2003). Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. Journal of Neuroscience Research, 73(3), 296–307.

Borlongan, C. V., Hadman, M., Sanberg, C. D., & Sanberg, P. R. (2004). Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke, 35, 2385–2389.

Newman, M. B., Willing, A. E., Manressa, J. J., Sanberg, C. D., & Sanberg, P. R. (2006). Cytokines produced by cultured human umbilical cord blood (HUCB) cells: implications for brain repair. Experimental Neurology, 199(1), 201–208.

Vendrame, M., Cassady, J., Newcomb, J., et al. (2004). Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke, 35, 2390–2395.

Xiao, J., Nan, Z., Motooka, Y., & Low, W. C. (2005). Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev., 14, 722–733.

Newcomb, J. D., Ajrno, C. T., Sanberg, C. D., et al. (2006). Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant, 15, 213–223.

Vendrame, M., Gemma, C., Pennypacker, K. R., Bickford, P. C., Davis Sanberg, C., Sanberg, P. R., et al. (2006). Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Experimental Neurology, 199(1), 191–200 May.

Meier, C., Middelanis, J., Wasielewski, B., Neuhoff, S., Roth-Haerer, A., Gantert, M., et al. (2006). Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatric Research, 59(2), 244–249 Feb.

Chen, S. H., Chang, F. M., Tsai, Y. C., Huang, K. F., Lin, C. L., & Lin, M. T. (2006). Infusion of human umbilical cord blood cells protect against cerebral ischemia and damage during heatstroke in the rat. Experimental Neurology, 199(1):67–76, May.

Vendrame, M., Gemma, C., de Mesquita, D., Collier, L., Bickford, P. C., Sanberg, C. D., et al. (2005). Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev., 14(5), 595–604 Oct.

Nan, Z., Grande, A., Sanberg, C. D., Sanberg, P. R., & Low, W. C. (2005). Infusion of human umbilical cord blood ameliorates neurologic deficits in rats with hemorrhagic brain injury. Annals of the New York Academy of Sciences, 1049, 84–96 May.

Nystedt, J., Mäkinen, S., Laine, J., & Jolkkonen, J. (2006). Human cord blood CD34+ cells and behavioral recovery following focal cerebral ischemia in rats. Acta Neurobiol Exp (Wars)., 66(4), 293–300.

Mäkinen, S., Kekarainen, T., Nystedt, J., Liimatainen, T., Huhtala, T., Närvänen, A., et al. (2006). Human umbilical cord blood cells do not improve sensorimotor or cognitive outcome following transient middle cerebral artery occlusion in rats. Brain Research, 1123(1), 207–215 Dec 6.

Chang, C. K., Chang, C. P., Chiu, W. T., & Lin, M. T. (2006). Prevention and repair of circulatory shock and cerebral ischemia/injury by various agents in experimental heatstroke. Current Medicinal Chemistry, 13(26), 3145–54.

Bliss, T., Guzman, R., Daadi, M., & Steinberg, G. K. (2007). Cell transplantation therapy for stroke. Stroke, 38, 817–826.

Chen, N., Hudson, J. E., Walczak, P., et al. (2005). Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural. Stem Cells, 23, 1560–1570.

Saporta, S., Kim, J. J., Willing, A. E., et al. (2003). Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J. Hematother Stem Cell Res, 12, 271–278.

Kuh, S. U., Cho, Y. E., Yoon, D. H., et al. (2005). Functional recovery after human umbilical cord blood cells transplantation with brain derived-neurotropic factor into the spinal cord injured rats. Acta Neurochirurgica (Wein), 14, 985–992.

Kang, K. S., Kim, S. W., Oh, Y. H., et al. (2005). Thirty-seven-year old spinal cord-injured female patient, tranplanted of multipotent stem cells from human UC blood with improved sensory perception and mobility, both functionally and morphologically: A case study. Cytotherapy, 7, 368–373.

Lu, D., Sanberg, P. R., Mahmood, A., et al. (2002). Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant, 11, 275–281.

Ende, N., & Chen, R. (2002). Parkinson’s disease mice and human umbilical cord blood. J Med, 33, 173–80.

Gaebuzova-Davis, S., Willing, A. E., Zigova, T., et al. (2003). Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. Journal of Hematotherapy and Stem Cell Research, 12, 255–270.

Nishio, Y., Koda, M., Kamada, T., Someya, Y., Yoshinaga, K., Okada, S., et al. (2006). The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats. J Neurosurg Spine, 5, 424–33.

Zhao, Z. M., Li, H. J., Liu, H. Y., Lu, S. H., Yang, R. C., Zhang, Q. J., et al. (2004). Intraspinal transplantation of CD34+ human umbilical cord blood cells after spinal cord hemisection injury improves functional recovery in adult rats. Cell Transplant, 13, 113–22.

Chen, R., & Ende, N. (2000). The potential for the use of mononuclear cells from human umbilical cord blood in the treatment of amyotrophic lateral sclerosis in SOD1 mice. J Med, 31, 21–30.

Ende, N., Weinstein, F., Chen, R., & Ende, M. (2000). Human umbilical cord blood effect on sod mice (amyotrophic lateral sclerosis). Life Sciences, 67, 53–59.

Bachstetter, A. D., Pabon, M. M., Cole, M. J., Hudson, C. E., Sanberg, P. R., Willing, A. E., et al. (2008). Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain. 2008. Published online at BMC Neuroscience 9:30; doi: 10.1186/1471–2202–9–22 .

Nikolic, W. V., Hou, H., Town, T., Zhu, Y., Giunta, B., Sanberg, C. D., Zeng, J., Luo, D., Ehrhart, J., Mori, T., Sanberg Pr, Tan1 J. (2008). Peripherally administered human umbilical cord blood cells reduce parenchymal and vascular beta-amyloid deposits in Alzheimer mice. Stem Cells Develop., 17, 1–17.