Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cheng, 2017, Toward safe lithium metal anode in rechargeable batteries: a review, Chem. Rev., 117, 10403, 10.1021/acs.chemrev.7b00115
Yang, 2017, Protected lithium-metal anodes in batteries: from liquid to solid, Adv. Mater., 29, 10.1002/adma.201701169
Peng, 2017, Review on high-loading and high-energy lithium–sulfur batteries, Adv. Energy Mater., 7
Cheng, 2016, A review of solid electrolyte interphases on lithium metal anode, Adv. Sci. (Weinh.), 3, 1500213, 10.1002/advs.201500213
Cao, 2015, Anodes for rechargeable lithium-sulfur batteries, Adv. Energy Mater., 5, 1402273, 10.1002/aenm.201402273
Guo, 2017, Reviving lithium-metal anodes for next-generation high-energy batteries, Adv. Mater., 29, 1700007, 10.1002/adma.201700007
Zhao, 2016, Li2S5-based ternary-salt electrolyte for robust lithium metal anode, Energy Storage Mater., 3, 77, 10.1016/j.ensm.2016.01.007
Yan, 2016, Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: the role of polysulfides on lithium anode, J. Power Sources, 327, 212, 10.1016/j.jpowsour.2016.07.056
Zhang, 2014, Dendrite-free lithium deposition with self-aligned nanorod structure, Nano Lett., 14, 6889, 10.1021/nl5039117
Li, 2015, The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth, Nat. Commun., 6, 7436, 10.1038/ncomms8436
Zhang, 2017, Columnar lithium metal anodes, Angew. Chem. Int. Ed., 56, 14207, 10.1002/anie.201707093
Cheng, 2017, Implantable solid electrolyte interphase in lithium-metal batteries, Chem, 2, 258, 10.1016/j.chempr.2017.01.003
Tikekar, 2016, Design principles for electrolytes and interfaces for stable lithium-metal batteries, Nat. Energy, 1, 16114, 10.1038/nenergy.2016.114
Liu, 2017, Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer, J. Am. Chem. Soc., 139, 4815, 10.1021/jacs.6b13314
Tu, 2017, Designing artificial solid-electrolyte interphases for single-ion and high-efficiency transport in batteries, Joule, 1, 394, 10.1016/j.joule.2017.06.002
Sun, 2016, Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nat. Energy, 1, 16071, 10.1038/nenergy.2016.71
Tu, 2017, Nanoporous hybrid electrolytes for high-energy batteries based on reactive metal anodes, Adv. Energy Mater., 7, 1602367, 10.1002/aenm.201602367
Liu, 2017, Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires, Nat. Energy, 2, 17035, 10.1038/nenergy.2017.35
Liu, 2017, Garnet solid electrolyte protected Li-metal batteries, ACS Appl. Mater. Interfaces, 9, 18809, 10.1021/acsami.7b03887
Xin, 2017, Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects, ACS Energy Lett., 2, 1385, 10.1021/acsenergylett.7b00175
Qian, 2015, High rate and stable cycling of lithium metal anode, Nat. Commun., 6, 6362, 10.1038/ncomms7362
Cheng, 2016, Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries, Adv. Mater., 28, 2888, 10.1002/adma.201506124
Lin, 2017, Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix, Proc. Natl. Acad. Sci. USA, 114, 4613, 10.1073/pnas.1619489114
Liu, 2016, Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode, Nat. Commun., 7, 10992, 10.1038/ncomms10992
Zhang, 2016, Nanostructured energy materials for electrochemical energy conversion and storage: a review, J. Energy Chem., 25, 967, 10.1016/j.jechem.2016.11.003
Zhang, 2017, Advanced micro/nanostructures for lithium metal anodes, Adv. Sci., 4, 1600445, 10.1002/advs.201600445
Zhang, 2016, Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth, Adv. Mater., 28, 2155, 10.1002/adma.201504117
Lin, 2016, Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes, Nat. Nanotechnol., 11, 626, 10.1038/nnano.2016.32
Liang, 2016, Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating, Proc. Natl. Acad. Sci. USA, 113, 2862, 10.1073/pnas.1518188113
Wang, 2017, Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels, Adv. Mater., 29, 1703729, 10.1002/adma.201703729
Zuo, 2017, Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes, Adv. Mater., 29, 1700389, 10.1002/adma.201700389
Yang, 2015, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes, Nat. Commun., 6, 8058, 10.1038/ncomms9058
Li, 2017, 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries, Adv. Funct. Mater., 27, 1606422, 10.1002/adfm.201606422
Meng, 2017, Advances in structure and property optimizations of battery electrode materials, Joule, 1, 522, 10.1016/j.joule.2017.08.001
Lin, 2017, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12, 194, 10.1038/nnano.2017.16
Yan, 2016, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1, 16010, 10.1038/nenergy.2016.10
Yang, 2017, Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode, Adv. Mater., 29, 1702714, 10.1002/adma.201702714
Zhang, 2017, Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes, Angew. Chem. Int. Ed., 56, 7764, 10.1002/anie.201702099
Yun, 2016, Chemical dealloying derived 3D porous current collector for Li metal anodes, Adv. Mater., 28, 6932, 10.1002/adma.201601409
Lu, 2017, Lithiophilic Cu-Ni core-shell nanowire network as a stable host for improving lithium anode performance, Energy Storage Mater., 9, 31, 10.1016/j.ensm.2017.06.004
Luo, 2017, Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer, Adv. Mater., 29, 1606042, 10.1002/adma.201606042
Chi, 2017, Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode, Adv. Funct. Mater., 27, 1700348, 10.1002/adfm.201700348
Wang, 2017, Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes, Nano Lett., 17, 565, 10.1021/acs.nanolett.6b04695
Liu, 2017, Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes, Joule, 1, 563, 10.1016/j.joule.2017.06.004
Sun, 2016, Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries, Chem, 1, 287, 10.1016/j.chempr.2016.07.009
Jin, 2016, Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li-S batteries, Adv. Mater., 28, 9094, 10.1002/adma.201602704
Pelton, 1986, The Ag-Li (silver-lithium) system, Bull. Alloy Phase Diag., 7, 223
Wang, 2015, Thermodynamic description of the Ag-(Ca, Li, Zn) and Ca-(In, Li) binary systems, Calphad, 50, 68, 10.1016/j.calphad.2015.04.006
Fang, 2017, More reliable lithium-sulfur batteries: status, solutions and prospects, Adv. Mater., 29, 10.1002/adma.201606823
Zhang, 2017, Metal-organic-framework-based materials as platforms for renewable energy and environmental applications, Joule, 1, 77, 10.1016/j.joule.2017.08.008
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0
Accelrys, 2010
Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865