Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries

Joule - Tập 2 Số 4 - Trang 764-777 - 2018
Rui Zhang1, Xiang Chen1, Xin Shen1, Xue‐Qiang Zhang1, Xiaoru Chen1, Xin‐Bing Cheng1, Chong Yan1, Chen‐Zi Zhao1, Qiang Zhang1
1Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Armand, 2008, Building better batteries, Nature, 451, 652, 10.1038/451652a

Cheng, 2017, Toward safe lithium metal anode in rechargeable batteries: a review, Chem. Rev., 117, 10403, 10.1021/acs.chemrev.7b00115

Chu, 2016, The path towards sustainable energy, Nat. Mater., 16, 16, 10.1038/nmat4834

Yang, 2017, Protected lithium-metal anodes in batteries: from liquid to solid, Adv. Mater., 29, 10.1002/adma.201701169

Peng, 2017, Review on high-loading and high-energy lithium–sulfur batteries, Adv. Energy Mater., 7

Cheng, 2016, A review of solid electrolyte interphases on lithium metal anode, Adv. Sci. (Weinh.), 3, 1500213, 10.1002/advs.201500213

Cao, 2015, Anodes for rechargeable lithium-sulfur batteries, Adv. Energy Mater., 5, 1402273, 10.1002/aenm.201402273

Guo, 2017, Reviving lithium-metal anodes for next-generation high-energy batteries, Adv. Mater., 29, 1700007, 10.1002/adma.201700007

Zhao, 2016, Li2S5-based ternary-salt electrolyte for robust lithium metal anode, Energy Storage Mater., 3, 77, 10.1016/j.ensm.2016.01.007

Yan, 2016, Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: the role of polysulfides on lithium anode, J. Power Sources, 327, 212, 10.1016/j.jpowsour.2016.07.056

Zhang, 2014, Dendrite-free lithium deposition with self-aligned nanorod structure, Nano Lett., 14, 6889, 10.1021/nl5039117

Li, 2015, The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth, Nat. Commun., 6, 7436, 10.1038/ncomms8436

Zhang, 2017, Columnar lithium metal anodes, Angew. Chem. Int. Ed., 56, 14207, 10.1002/anie.201707093

Cheng, 2017, Implantable solid electrolyte interphase in lithium-metal batteries, Chem, 2, 258, 10.1016/j.chempr.2017.01.003

Tikekar, 2016, Design principles for electrolytes and interfaces for stable lithium-metal batteries, Nat. Energy, 1, 16114, 10.1038/nenergy.2016.114

Liu, 2017, Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer, J. Am. Chem. Soc., 139, 4815, 10.1021/jacs.6b13314

Tu, 2017, Designing artificial solid-electrolyte interphases for single-ion and high-efficiency transport in batteries, Joule, 1, 394, 10.1016/j.joule.2017.06.002

Sun, 2016, Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nat. Energy, 1, 16071, 10.1038/nenergy.2016.71

Tu, 2017, Nanoporous hybrid electrolytes for high-energy batteries based on reactive metal anodes, Adv. Energy Mater., 7, 1602367, 10.1002/aenm.201602367

Liu, 2017, Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires, Nat. Energy, 2, 17035, 10.1038/nenergy.2017.35

Liu, 2017, Garnet solid electrolyte protected Li-metal batteries, ACS Appl. Mater. Interfaces, 9, 18809, 10.1021/acsami.7b03887

Xin, 2017, Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects, ACS Energy Lett., 2, 1385, 10.1021/acsenergylett.7b00175

Qian, 2015, High rate and stable cycling of lithium metal anode, Nat. Commun., 6, 6362, 10.1038/ncomms7362

Cheng, 2016, Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries, Adv. Mater., 28, 2888, 10.1002/adma.201506124

Lin, 2017, Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix, Proc. Natl. Acad. Sci. USA, 114, 4613, 10.1073/pnas.1619489114

Liu, 2016, Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode, Nat. Commun., 7, 10992, 10.1038/ncomms10992

Zhang, 2016, Nanostructured energy materials for electrochemical energy conversion and storage: a review, J. Energy Chem., 25, 967, 10.1016/j.jechem.2016.11.003

Zhang, 2017, Advanced micro/nanostructures for lithium metal anodes, Adv. Sci., 4, 1600445, 10.1002/advs.201600445

Zhang, 2016, Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth, Adv. Mater., 28, 2155, 10.1002/adma.201504117

Lin, 2016, Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes, Nat. Nanotechnol., 11, 626, 10.1038/nnano.2016.32

Liang, 2016, Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating, Proc. Natl. Acad. Sci. USA, 113, 2862, 10.1073/pnas.1518188113

Wang, 2017, Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels, Adv. Mater., 29, 1703729, 10.1002/adma.201703729

Zuo, 2017, Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes, Adv. Mater., 29, 1700389, 10.1002/adma.201700389

Yang, 2015, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes, Nat. Commun., 6, 8058, 10.1038/ncomms9058

Li, 2017, 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries, Adv. Funct. Mater., 27, 1606422, 10.1002/adfm.201606422

Meng, 2017, Advances in structure and property optimizations of battery electrode materials, Joule, 1, 522, 10.1016/j.joule.2017.08.001

Lin, 2017, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12, 194, 10.1038/nnano.2017.16

Yan, 2016, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1, 16010, 10.1038/nenergy.2016.10

Yang, 2017, Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode, Adv. Mater., 29, 1702714, 10.1002/adma.201702714

Zhang, 2017, Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes, Angew. Chem. Int. Ed., 56, 7764, 10.1002/anie.201702099

Yun, 2016, Chemical dealloying derived 3D porous current collector for Li metal anodes, Adv. Mater., 28, 6932, 10.1002/adma.201601409

Lu, 2017, Lithiophilic Cu-Ni core-shell nanowire network as a stable host for improving lithium anode performance, Energy Storage Mater., 9, 31, 10.1016/j.ensm.2017.06.004

Luo, 2017, Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer, Adv. Mater., 29, 1606042, 10.1002/adma.201606042

Chi, 2017, Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode, Adv. Funct. Mater., 27, 1700348, 10.1002/adfm.201700348

Wang, 2017, Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes, Nano Lett., 17, 565, 10.1021/acs.nanolett.6b04695

Liu, 2017, Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes, Joule, 1, 563, 10.1016/j.joule.2017.06.004

Sun, 2016, Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries, Chem, 1, 287, 10.1016/j.chempr.2016.07.009

Jin, 2016, Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li-S batteries, Adv. Mater., 28, 9094, 10.1002/adma.201602704

Pelton, 1986, The Ag-Li (silver-lithium) system, Bull. Alloy Phase Diag., 7, 223

Wang, 2015, Thermodynamic description of the Ag-(Ca, Li, Zn) and Ca-(In, Li) binary systems, Calphad, 50, 68, 10.1016/j.calphad.2015.04.006

Fang, 2017, More reliable lithium-sulfur batteries: status, solutions and prospects, Adv. Mater., 29, 10.1002/adma.201606823

Zhang, 2017, Metal-organic-framework-based materials as platforms for renewable energy and environmental applications, Joule, 1, 77, 10.1016/j.joule.2017.08.008

Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169

Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0

Accelrys, 2010

Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758

Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953

Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188