Copy-move forgery detection: Survey, challenges and future directions

Journal of Network and Computer Applications - Tập 75 - Trang 259-278 - 2016
Nor Bakiah Abd Warif1, Ainuddin Wahid Abdul Wahab1, Mohd Yamani Idna Idris1, Roziana Ramli1, Rosli Salleh1, Shahaboddin Shamshirband1, Kim-Kwang Raymond Choo2,3
1Department of Computer System and Technology, Faculty of Computer Science & Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX 78249-0631, USA
3School of Information Technology & Mathematical Sciences, University of South Australia, Adelaide, SA 5001, Australia

Tài liệu tham khảo

Akbarpour Sekeh, 2013, Efficient image duplicated region detection model using sequential block clustering, Digit. Investig., 10, 73, 10.1016/j.diin.2013.02.007 Al-Qershi, 2013, Passive detection of copy-move forgery in digital images: state-of-the-art, Forensic Sci. Int., 231, 284, 10.1016/j.forsciint.2013.05.027 Amerini, 2011, A SIFT-based forensic method for copy – move attack detection and transformation recovery, IEEE Trans. Inf. Forensics Secur., 6, 1099, 10.1109/TIFS.2011.2129512 Amerini, 2013, Copy-move forgery detection and localization by means of robust clustering with J-linkage, Signal Process. Image Commun., 28, 659, 10.1016/j.image.2013.03.006 Anand, V., Hashmi, Mohammad Farukh Keskar, A.G., 2014. A Copy Move Forgery Detection to Overcome Sustained Attacks Using Dyadic Wavelet Transform and SIFT Methods, in: 6th Asian Conference on Intelligent Information and Database Systems (ACIIDS). pp. 530–542. Ardizzone, 2015, Copy – move forgery detection by matching triangles of keypoints, IEEE Trans. Inf. Forensics Secur., 10, 2084, 10.1109/TIFS.2015.2445742 Ardizzone, E., Bruno, A., Mazzola, G., 2010. Detecting Multiple Copies in Tampered Images. In: 17th International Conference on Image Processing. pp. 2117–2120. Ardizzone, E., Mazzola, G., Informatica, I., Università, D., 2009. Detection of Duplicated Regions in Tampered Digital Images by Bit-Plane Analysis, in: 15th International Conference Vietri Sul Mare, Italy. pp. 893–901. Bay, 2008, Speeded-Up Robust Features (SURF), Comput. Vis. Image Underst., 110, 346, 10.1016/j.cviu.2007.09.014 Bayram, S., Sencar, H.T., Memon, N., 2009. An Efficient And Robust Method For Detecting Copy-Move Forgery, in: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 1053–1056. Behringer, R., Ramachandran., M., Chang, V., 2016. A Low-Cost Intelligent Car Break-in Alert System Using Smartphone Accelerometers for Detecting Vehicle Break-Ins, in: The First International Conference on Internet of Things and Big Data. Bilgehan, M., Uluta, M., 2013. Detection of Copy-Move Forgery Using Krawtchouk Moment, in: 8th International Conference on Electrical and Electronics Engineering (ELECO), pp. 311–314. Birajdar, 2013, Digital image forgery detection using passive techniques: a survey, Digit. Investig., 10, 226, 10.1016/j.diin.2013.04.007 Bo, X., Junwen, W., Guangjie, L., Yuewei, D., 2010. Image Copy-Move Forgery Detection Based On SURF, in: International Conference on Multimedia Information Networking and Security. Ieee, pp. 889–892. 10.1109/MINES.2010.189. Bravo-Solorio, S., Nandi, A., 2011. Exposing duplicated regions affected by reflection, rotation and scaling, in: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 1880–1883. 10.1016/j.sigpro.2011.01.022. Brown, M., Szeliski, R., Winder, S., 2005. Multi-Image Matching Using Multi-Scale Oriented Patches, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). Ieee, pp. 510–517. 10.1109/CVPR.2005.235. Cao, 2012, A robust detection algorithm for copy-move forgery in digital images, Forensic Sci. Int., 214, 33, 10.1016/j.forsciint.2011.07.015 Chen, 2013, Region duplication detection based on harris corner points and step sector statistics, J. Vis. Commun. Image Represent., 24, 244, 10.1016/j.jvcir.2013.01.008 Chora, 2007, Image Feature Extraction Techniques and Their Applications for CBIR and Biometrics Systems, Int. J. Biol. Biomed. Eng., 1 Christlein, 2010, A Study on Features for the Detection of Copy-Move Forgeries. Sicherheit 2010, Gesellschaft für, Inform. e. V., 105 Christlein, 2012, An Evaluation of Popular Copy-Move Forgery Detection Approaches, IEEE Trans. Inf. Forensics Secur., 7, 1841, 10.1109/TIFS.2012.2218597 Cozzolino, D., Poggi, G., Verdoliva, L., 2014. Copy-Move Forgery Detection Based On Patchmatch, in: IEEE International Conference on Image Processing. pp. 5247–5251. Davarzani, 2013, Copy-move forgery detection using multiresolution local binary patterns, Forensic Sci. Int., 231, 61, 10.1016/j.forsciint.2013.04.023 Deng, 2012, Detection of copy-rotate-move forgery using Dual Tree Complex Wavelet Transform, Adv. Sci. Lett., 16, 32, 10.1166/asl.2012.3289 Do, 2015, A Forensically Sound Adversary Model for Mobile Devices, PLoS One, 10, e0138449, 10.1371/journal.pone.0138449 Do, 2015, A cloud-focused mobile forensics methodology, IEEE Cloud Comput., 2, 60, 10.1109/MCC.2015.71 Do, 2016, Is the data on your wearable device secure? An Android, Wear smartwatch case Study Softw.: Pract. Exp. Fan, 2014, Challenges of Big Data analysis, Natl. Sci. Rev., 1 Farid, H., 2006. Exposing digital forgeries in scientific images, in: Proceeding of the 8th Workshop on Multimedia and Security - MM&Sec ’06. ACM Press, New York, New York, USA, p. 29. 10.1145/1161366.1161374. Farukh, 2014, Copy-move Image Forgery Detection Using an Efficient and Robust Method Combining Un-decimated Wavelet Transform and Scale Invariant Feature Transform, AASRI Procedia, 9, 84, 10.1016/j.aasri.2014.09.015 Fridrich, 2003, Detection of Copy-Move Forgery in Digital Images, Int. J. Comput. Sci. Issues, 3, 652 Gan, 2014, Image copy-move tamper blind detection algorithm based on integrated feature vectors, J. Chem. Pharm. Res., 6, 1584 Guo, 2013, Duplication Forgery Detection Using Improved DAISY Descriptor, Expert Syst. Appl., 40, 707, 10.1016/j.eswa.2012.08.002 Harris, C., Stephens, M., 1988. A Combined Corner and Edge Detector, in: Procedings of the Alvey Vision Conference 1988. Alvey Vision Club, pp. 23.1–23.6. doi:10.5244/C.2.23. He, 2013, Exposing copy move forgeries based on a dimension reduced SIFT method, Inf. Technol. J., 12, 2975, 10.3923/itj.2013.2975.2979 Hsu, H.C., Wang, M.S., 2012. Detection of copy-move forgery image using Gabor descriptor. Proc. Int. Conf. Anti-Counterfeiting, Secur. Identification, ASID, pp. 1–4. doi:10.1109/ICASID.2012.6325319. Hu, 2014, Orthogonal moments based on exponent functions: exponent-Fourier moments, Pattern Recognit., 47, 2596, 10.1016/j.patcog.2014.02.014 Hu, 1962, Visual Pattern Recognition by, Moment Invariants. IRE Trans. Inf. Theory, 2, 179 Hu, Y., Yan, J., Choo, K.-K.R., 2016. PEDAL: A Dynamic Analysis Tool for Efficient Concurrency Bug Reproduction in Big Data Environment. Cluster Comput. Huang, 2011, Improved DCT-based detection of copy-move forgery in images, Forensic Sci. Int., 206, 178, 10.1016/j.forsciint.2010.08.001 Huang, H., Guo, W., Zhang, Y., 2008. Detection Of Copy-Move Forgery in Digital Images Using SIFT Algorithm, in: IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application. Ieee, pp. 272–276. 10.1109/PACIIA.2008.240. Hussain, 2013, Image forgery detection using multi-resolution weber local descriptors, EuroCon, 1570 Hussain, 2013, Evaluation of image forgery detection using multi-scale weber local descriptors, IEEE Eur., 2013, 1570 Hussain, M., Muhammad, G., Saleh, S.Q., Mirza, A.M., Bebis, G., 2012. Copy-move image forgery detection using multi-resolution Weber descriptos. 8th Int. Conf. Signal Image Technol. Internet Based Syst. SITIS, 2012r, pp. 395–401. 10.1109/SITIS.2012.64. Hussain, M., Saleh, S.Q., Aboalsamh, H., Muhammad, G., Bebis, G., 2014. Comparison between WLD and LBP descriptors for non-intrusive image forgery detection, in: IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings. Ieee, pp. 197–204. 10.1109/INISTA.2014.6873618. Jaberi, 2013, Accurate and robust localization of duplicated region in copy–move image forgery, Mach. Vis. Appl, 25, 451, 10.1007/s00138-013-0522-0 Jaberi, M., Bebis, G., Hussain, M., Muhammad, G., 2013a. Improving The Detection And Localization Of Duplicated Regions In Copy-Move Image Forgery, in: 18th International Conference on Digital Signal Processing (DSP). Ieee, pp. 1–6. 10.1109/ICDSP.2013.6622700. Jing, D., Wei, W., 2011. CASIA Tampered Image Detection Evaluation (TIDE) Database [WWW Document]. URL 〈http://forensics.idealtest.org/casiav2/〉 (accessed 04.28.15). Kakar, 2012, Exposing Postprocessed Copy-Paste Forgeries through Transform-Invariant Features, IEEE Trans. Inf. Forensics Secur., 7, 1018, 10.1109/TIFS.2012.2188390 Kashyap, A., Joshi, S.D., 2013. Detection of Copy-Move Forgery Using Wavelet Decomposition, in: International Conference on Signal Processing and Communication (ICSC). pp. 1–3. Ketenci, S., Ulutas, G., 2013. Copy-move forgery detection in images via 2D-Fourier Transform. 36th Int. Conf. Telecommun. Signal Process. 813–816. doi:10.1109/TSP.2013.6614051. Kodituwakku, 2004, Comparison of color features for image retrieval, Indian J. Comput. Sci., 1, 207 Kumar, S., Desai, J., Mukherjee, S., 2013. A Fast DCT Based Method for Copy Move Forgery Detection, in: IEEE Second International Conference on Image Information Processing (ICIIP-2013). Ieee, pp. 649–654. 10.1109/ICIIP.2013.6707675. Kuznetsov Andrey Vladimirovich, M.V.V., 2014. A Fast Plain Copy-Move Detection Algorithm Based on Structural Pattern and 2D Rabin-Karp Rolling Hash. 11th Int. Conf. ICIAR, pp. 461–468. Le, Z., Xu, W., 2013. A robust image copy-move forgery detection based on mixed moments. Proc. IEEE Int. Conf. Softw. Eng. Serv. Sci. ICSESS, pp. 381–384. 10.1109/ICSESS.2013.6615329. Li, 2014, Segmentation-based Image Copy-move Forgery Detection Scheme, IEEE Trans. Inf. Forensics Secur., 6013, 1 Li, 2014, Detecting copy-move forgery under affine transforms for image forensics, Comput. Electr. Eng., 40, 1951, 10.1016/j.compeleceng.2013.11.034 Li, 2015, ART: an attack-resistant trust management scheme for securing vehicular ad hoc networks, IEEE Trans. Intell. Transp. Syst., 1, 1 Li, 2012, Passive detection of copy-paste forgery between JPEG images, J. Cent. South Univ., 19, 2839, 10.1007/s11771-012-1350-5 Li, 2013, Image copy-move forgery detection based on polar cosine transform and approximate nearest neighbor searching, Forensic Sci. Int., 224, 59, 10.1016/j.forsciint.2012.10.031 Li, L., Li, S., Wang, J., 2012. Copy-move forgery detection based on PHT. Proceeding 2012 World Congr. Inf. Commun. Technol. WICT, pp. 1061–1065. 10.1109/WICT.2012.6409232. Li, W., Yu, N., 2010. Rotation robust detection of copy-move forgery, in: Proceedings - International Conference on Image Processing, ICIP. pp. 2113–2116. doi:10.1109/ICIP.2010.5652519. Li, W., Yu, N., Yuan, Y., 2008. Doctored JPEG image detection. IEEE Int. Conf. Multimed. Expo 253–256. 10.1109/ICME.2008.4607419. Lin, 2013, Survey on blind image forgery detection, IET Image Process, 7, 660, 10.1049/iet-ipr.2012.0388 Lin, H., Wang, C., Kao, Y., 2009. Fast Copy-Move Forgery Detection. WSEAS Trans. SIGNAL Process. 5, 188–197. Liu, 2014, Digital image forgery detection using JPEG features and local noise discrepancies, Sci. World J., 2014 Lucchese, 2000, A noise-robust frequency domain technique for estimating planar roto-translations, IEEE Trans. Signal Process., 48, 1769, 10.1109/78.845934 Lynch, 2013, An efficient expanding block algorithm for image copy-move forgery detection, Inf. Sci. (Ny.), 239, 253, 10.1016/j.ins.2013.03.028 Mahdian, 2007, Detection of copy-move forgery using a method based on blur moment invariants, Forensic Sci. Int., 171, 180, 10.1016/j.forsciint.2006.11.002 Mahrt, 2013, The value of big data in digital media research, J. Broadcast. Electron. Media, 57, 20, 10.1080/08838151.2012.761700 Miljkovi, 2009, Image Pre-Processing Tool, Kragujev. J. Math., 32, 97 Mishra, 2013, Region duplication forgery detection technique based on SURF And HAC, Sci. World J., 2013 Mohamadian, Z., Pouyan, A.A., 2013. Detection Of Duplication Forgery In Digital Images In Uniform And Non-Uniform Regions, in: 5th International Conference on Computer Modelling and Simulation. Ieee, pp. 455–460. 10.1109/UKSim.2013.94. Muhammad, 2012, Passive Copy Move Image Forgery Detection Using Undecimated Dyadic Wavelet Transform, Digit. Investig., 9, 49, 10.1016/j.diin.2012.04.004 Muhammad, 2013, Copy move image forgery detection method using steerable pyramid transform and texture descriptor, EuroCon, 1586 Muhammad, G., n.d. Image Forensics [WWW Document]. URL 〈http://faculty.ksu.edu.sa/ghulam/Pages/ImageForensics.aspx〉 (accessed 04.28.15). Murali, S., Anami, B.S., Chittapur, G.B., 2012. Detection of Digital Photo Image Forgery, in: IEEE International Conference on Advanced Communication Control and Computing Technologies. p. 9166. Myna, A.N., Venkateshmurthy, M.G., Patil, C.G., 2008. Detection of region duplication forgery in digital images using wavelets and log-polar mapping, in: Proceedings - International Conference on Computational Intelligence and Multimedia Applications, ICCIMA 2007. pp. 371–377. 10.1109/ICCIMA.2007.161. Nepal, 2015, Trustworthy processing of healthcare big data in hybrid clouds, IEEE Cloud Comput., 2, 78, 10.1109/MCC.2015.36 Ng, T., Chang, S., 2004. A Data Set of Authentic and Spliced Image Blocks. Pan, 2010, Region duplication detection using image feature matching, IEEE Trans. Inf. Forensics Secur., 5, 857, 10.1109/TIFS.2010.2078506 Peng, 2011, A complete passive blind image copy-move forensics scheme based on compound statistics features, Forensic Sci. Int., 212, e21, 10.1016/j.forsciint.2011.06.011 Peng, 2016, Bit-level N-gram based forensic authorship analysis on social media: identifying individuals from linguistic profiles, J. Netw. Comput. Appl., 10.1016/j.jnca.2016.04.001 Peng, J., Choo, K.K.R., Ashman, H., 2016a. Astroturfing detection in social media: Using binary n-gram analysis for authorship attribution. In Proceedings of 15th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom 2016), IEEE Computer Society Press. http://dx.doi.org/10.1109/TrustCom/BigDataSE/ISPA.2016.53 Philip Chen, 2014, Data-intensive applications, challenges, techniques and technologies: a survey on Big, Data. Inf. Sci. (Ny.), 275, 314, 10.1016/j.ins.2014.01.015 Piccardi, M., 2004. Background subtraction techniques: a review. 2004 IEEE Int. Conf. Syst. Man Cybern. (IEEE Cat. No.04CH37583) 4, pp. 3099–3104. doi:10.1109/ICSMC.2004.1400815. Pooranian, 2011, New hybrid algorithm for task scheduling in grid computing to decrease missed task, J. World Acad. Sci. Eng. Technol., 5, 786 Popescu, A.C., Farid, H., 2004. Exposing Digital Forgeries By Detecting Duplicated Image Regions. Pun, 2015, Oversegmentation and Feature Point Matching, IEEE Trans. Inf. Forensics Secur., 10, 1705, 10.1109/TIFS.2015.2423261 Quick, 2014, Google drive: forensic analysis of data remnants, J. Netw. Comput. Appl., 40, 179, 10.1016/j.jnca.2013.09.016 Quick, 2014, Impacts of increasing volume of digital forensic data: a survey and future research challenges, Digit. Investig., 11, 273, 10.1016/j.diin.2014.09.002 Quick, 2014, Data reduction and data mining framework for digital forensic evidence: Storage, intelligence, review and archive. Trends, Issues Crime. Crim. Justice, 480, 1 Quick, 2016, Big forensic data reduction: digital forensic images and electronic evidence, Clust. Comput, 19, 723, 10.1007/s10586-016-0553-1 Quick, D., Martini, B., Choo K.K.R., 2013. Cloud storage forensics. Syngress, an Imprint of Elsevier. 〈http://www.sciencedirect.com/science/book/9780124199705〉. Rostirolla, G., da Rosa Righi, R., dos Reis, Eduardo Souza. Fischer, G., Chang, Victor. Ramachandran, M., 2016. IDAC: A Sensor-Based Model for Presence Control and Idleness Detection in Brazilian Companies, in: IDAC: A Sensor-Based Model for Presence Control and Idleness Detection in Brazilian Companies. In, The First International Conference on Internet of Things and Big Data, Special Session, Recent Advancement in Internet of Things, Big Data and Security (RAI). Ryu, 2013, Rotation invariant localization of duplicated image regions based on zernike moments, IEEE Trans. Inf. Forensics Secur., 8, 1355, 10.1109/TIFS.2013.2272377 Ryu, S.J., Lee, M.J., Lee, H.K., 2010. Detection of copy-rotate-move forgery using zernike moments, in: 12th International Conference. pp. 51–65. 10.1007/978-3-642-16435-4_5. Shao, 2012, Image region duplication detection based on circular window expansion and phase correlation, Forensic Sci. Int., 222, 71, 10.1016/j.forsciint.2012.05.002 Shen, X., Zhu, Y., Lv, Y., Chen, H., 2013. Image Copy-Move Forgery Detection Based on SIFT and Gray Level, in: International Conference on Information Technology and Management Innovation (ICITMI2012). pp. 3021–3024. 10.4028/www.scientific.net/AMM.263-266.3021. Shin, 2013, Fast Detection of Copy-Move Forgery Image using DCT, J. Korea Multimed. Soc., 16, 411, 10.9717/kmms.2013.16.4.411 Shojafar, 2016, Energy-efficient Adaptive Resource Management for Real-time vehicle Cloud Services, IEEE Trans. Cloud Comput., 1 Silva, 2015, Going deeper into copy-move forgery detection: Exploring image telltales via multi-scale analysis and voting processes, J. Vis. Commun. Image Represent., 29, 16, 10.1016/j.jvcir.2015.01.016 Singh, 2012, A high performance copy-move image forgery detection scheme on GPU, Adv. Intell. Soft Comput. 131 AISC, 239, 10.1007/978-81-322-0491-6_23 Smith, M., Szongott, C., Henne, B., Voigt, G. Von, 2012. Big Data Privacy Issues in Public Social Media, in: 2012 6th IEEE International Conference on IEEE Digital Ecosystems Technologies (DEST), pp. 1–6. doi:10.1109/DEST.2012.6227909. Tavoli, R., Kozegar, E., Shojafar, M., Soleimani, H., Pooranian, Z., 2013. Weighted PCA for improving Document Image Retrieval System based on keyword spotting accuracy. 2013 36th Int. Conf. Telecommun. Signal Process. TSP, 2013, pp. 773–777. 10.1109/TSP.2013.6614043. Tijdink, 2014, Publication Pressure and Scientific Misconduct in Medical Scientists, J. Empir. Res, 9, 64, 10.1177/1556264614552421 Ting, Z., Rang-Ding, W., 2009. Copy-move forgery detection based on SVD in digital image, in: 2nd International Congress on Image and Signal Processing, CISP’09. pp. 0–4. 10.1109/CISP.2009.5301325. Tola, 2010, DAISY: An Efficient Dense Descriptor Applied To Wide-Baseline Stereo, IEEE Trans. Pattern Anal. Mach. Intell., 32, 815, 10.1109/TPAMI.2009.77 Tralic, D., Zupancic, I., Grgic, S., Grgic, M., 2013. CoMoFoD - New Database for Copy-Move Forgery Detection, in: Proceedings of 55th International Symposium ELMAR-2013. pp. 25–27. Ulutas, G., Ulutas, M., 2013. Image forgery detection using Color Coherence Vector. 2013 Int. Conf. Electron. Comput. Comput. ICECCO 2013 107–110. 10.1109/ICECCO.2013.6718240. Ulutaş, G., Ulutaş, M., Nabiyev, V.V, 2013. Copy Move Forgery Detection based on LBP, in: 21st Signal Processing and Communications Applications Conference (SIU). Vincent Christlein, C.R. and E.A.P., 2010. On Rotation Invariance In Copy-Move Forgery Detection, in: IEEE International Workshop on Information Forensics and Security. Wang, 2012, Blind detection of copy-move forgery based on multi-scale autoconvolution invariants, Commun. Comput. Inf. Sci., 438 Wu, Q., Wang, S., Zhang, X., 2010. Detection of image region-duplication with rotation and scaling tolerance, in: Second International Conference, ICCCI. pp. 100–108. 10.1007/978-3-642-16693-8_11. Xu, 2016, Precoder-and-receiver design scheme for multi-user coordinated multi-point in LTE-A and fifth generation systems, IET Commun., 10, 292, 10.1049/iet-com.2015.0229 Xu, 2016, Participatory sensing-based semantic and spatial analysis of urban emergency events using mobile social media, EURASIP J. Wirel. Commun. Netw., 2016, 44, 10.1186/s13638-016-0553-0 Yang, 2013, An efficient forensic method for copy – move forgery detection based on DWT-FWHT, Radio Eng., 22, 1098 Yang, Q.-C., Huang, C.-L., 2009. Copy-move forgery detection in digital image, in: 10th Pacific Rim Conference on Multimedia. pp. 816–825. Yu, 2014, Feature point-based copy-move forgery detection : covering the non-textured areas, Multimed. Tools Appl. Zhang, J., Feng, Z., Su, Y., 2008. A new approach for detecting copy-move forgery in digital images, in: 11th IEEE Singapore International Conference on Communication Systems, ICCS 2008. pp. 362–366. 10.1109/ICCS.2008.4737205. Zhao, 2010, Detection of copy-move forgery based on one improved LLE method, 2nd IEEE Int. Conf. Adv. Comput. Control, 4, 547 Zhao, 2013, Passive forensics for region duplication image forgery based on harris feature points and local binary patterns, Math. Probl. Eng., 2013 Zhao, 2013, Passive forensics for copy-move image forgery using a method based on DCT and SVD, Forensic Sci. Int., 233, 158, 10.1016/j.forsciint.2013.09.013 Zhao, L., Chen, L., Ranjan, R., Choo, K-K R., He, J., 2016. Geographical information system parallelization for spatial big data processing: a review. Cluster Comput. Zheng, 2014, Detection Technology of Tampering Image Based on Harris Corner Points, J. Comput. Inf. Syst., 10, 1481