Copula-based bivariate flood frequency analysis in a changing climate—A case study in the Huai River Basin, China

Journal of Earth Science - Tập 27 Số 1 - Trang 37-46 - 2016
Kai Duan1, Yadong Mei1, Liping Zhang1
1State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arnell, N. W., Gosling, S. N., 2013. The Impacts of Climate Change on River Flow Regimes at the Global Scale. Journal of Hydrology, 486: 351–364. doi:10.1016/j.jhydrol.2013.02.010

Ben Aissia, M. A., Chebana, F., Ouarda, T. B. M. J., et al., 2011. Multivariate Analysis of Flood Characteristics in a Climate Change Context of the Watershed of the Baskatong Reservoir, Province of Québec, Canada. Hydrological Processes, 26(1): 130–142. doi:10.1002/hyp.8117

Correia, F. N., 1987. Multivariate Partial Duration Series in Flood Risk Analysis. In: Singh, V. P., ed., Hydrologic Frequency Modeling. Reidel, Dordrecht. 541–554

Cunnane, C., 1987. Review of Statistical Models for Flood Frequency Estimation. In: Singh, V. P., ed., Hydrologic Frequency Modeling. Reidel, Dordrecht. 49–95

Duan, K., Mei, Y. D., 2013. A Comparison Study of Three Statistical Downscaling Methods and Their Model-Averaging Ensemble for Precipitation Downscaling in China. Theoretical and Applied Climatology, 116(3/4): 707–719. doi:10.1007/s00704-013-1069-8

Duan, K., Mei, Y. D., 2014. Comparison of Meteorological, Hydrological and Agricultural Drought Responses to Climate Change and Uncertainty Assessment. Water Resources Management, 28(14): 5039–5054. doi:10.1007/s11269-014-0789-6

Duan, K., Xiao, W. H., Mei, Y. D., et al., 2014. Multi-Scale Analysis of Meteorological Drought Risks Based on a Bayesian Interpolation Approach in Huai River Basin, China. Stochastic Environmental Research and Risk Assessment, 28(8): 1985–1998. doi:10.1007/s00477-014-0877-4

Goel, N. K., Seth, S. M., Chandra, S., 1998. Multivariate Modeling of Flood Flows. Journal of Hydraulic Engineering, 124(2): 146–155. doi:10.1061/(asce)0733-9429(1998)124:2(146)

IPCC, 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. In: Field, C. B., Barros, V. R., Dokken, D. J., et al., eds., Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York

Joe, H., 1997. Multivariate Models and Dependence Concepts. Chapman & Hall, London

Klein, B., Pahlow, M., Hundecha, Y., et al., 2010. Probability Analysis of Hydrological Loads for the Design of Flood Control Systems Using Copulas. Journal of Hydrologic Engineering, 15(5): 360–369. doi:10.1061/(asce)he.1943-5584.0000204

Kotz, S., Nadarajah, S., 2000. Extreme Value Distributions: Theory and Applications. Imperial College Press, London

Madsen, H., Rasmussen, P. F., Rosbjerg, D., 1997. Comparison of Annual Maximum Series and Partial Duration Series Methods for Modeling Extreme Hydrologic Events: 1. At-Site Modeling. Water Resources Research, 33(4): 747–757. doi:10.1029/96wr03848

Nelson, R. B., 1999. An Introduction to Copulas. Springer, New York

Salvadori, G., De Michele, C., 2004. Frequency Analysis via Copulas: Theoretical Aspects and Applications to Hydrological Events. Water Resources Research, 40(12): W12511. doi:10.1029/2004wr003133

Seibert, J., 1997. Estimation of Parameter Uncertainty in the HBV Model. Nordic Hydrology, 28(4/5): 247–262

Semenov, M. A., Brooks, R. J., Barrow, E. M., et al., 1998. Comparison of the WGEN and LARS-WG Stochastic Weather Generators for Diverse Climates. Climate Research, 10: 95–107

Semenov, M. A., Stratonovitch, P., 2010. Use of Multi-Model Ensembles from Global Climate Models for Assessment of Climate Change Impacts. Climate Research, 41: 1–14. doi:10.3354/cr00836

Singh, K., Singh, V. P., 1991. Derivation of Bivariate Probability Density Functions with Exponential Marginals. Stochastic Hydrology and Hydraulics, 5(1): 55–68. doi:10.1007/bf01544178

Sklar, K., 1959. Fonctions de Repartition an Dimensions et Leura Marges. Publ. Inst. Stat. Univ. Paris, 8: 229–231

Yue, S., 2000. The Bivariate Lognormal Distribution to Model a Multivariate Flood Episode. Hydrological Processes, 14(14): 2575–2588. doi:10.1002/1099-1085(20001015)14:14<2575:: aid-hyp115>3.0.co;2-l

Yue, S., Wang, C. Y., 2004. A Comparison of Two Bivariate Extreme Value Distributions. Stochastic Environmental Research and Risk Assessment (SERRA), 18(2): 61–66. doi:10.1007/s00477-003-0124-x

Zhang, L., Singh, V. P., 2006. Bivariate Flood Frequency Analysis Using the Copula Method. Journal of Hydrologic Engineering, 11(2): 150–164. doi:10.1061/(asce)1084-0699(2006)11:2(150)

Zhang, L., Singh, V. P., 2007. Trivariate Flood Frequency Analysis Using the Gumbel-Hougaard Copula. Journal of Hydrologic Engineering, 12(4): 431–439. doi:10.1061/(asce)1084-0699(2007)12:4(431)