Copper sulfate inhibition of quorum sensing in Pseudomonas capeferrum is dependent on biotic interactions
Tài liệu tham khảo
Abdu, 2017, Heavy metals and soil microbes, Environ. Chem. Lett., 15, 65, 10.1007/s10311-016-0587-x
Ansari, 2019, Fluorescent Pseudomonas -FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes, Sci. Rep., 9, 4547, 10.1038/s41598-019-40864-4
Berendsen, 2015, Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358 , WCS374 and WCS417, BMC Genom., 16, 539, 10.1186/s12864-015-1632-z
Bergeron, 2017, Candida albicans and Pseudomonas aeruginosa interact to enhance virulence of mucosal infection in transparent zebrafish, Infect. Immun., 85, 10.1128/IAI.00475-17
Bertani, 2004, Regulation of the N-Acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationary-phase RpoS Sigma factor and the global regulator GacA, Appl. Environ. Microbiol., 70, 5493, 10.1128/AEM.70.9.5493-5502.2004
Besset-Manzoni, 2018, Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies, Environ. Sci. Pollut. Res., 25, 29953, 10.1007/s11356-017-1152-2
Burns, 2013, Soil enzymes in a changing environment: current knowledge and future directions, Soil Biol. Biochem., 58, 216, 10.1016/j.soilbio.2012.11.009
Cesco, 2021, A smart and sustainable future for viticulture is rooted in soil: how to face Cu toxicity, Appl. Sci., 11, 907, 10.3390/app11030907
Cloete, 2010, Effect of the soil yeast Cryptococcus laurentii on the photosynthetic water and nutrient-use efficiency and respiratory carbon costs of a Mediterranean sclerophyll, Agathosma betulina (Berg.) Pillans. Symbiosis, 51, 245
Dieppois, 2012, The transcriptional regulator CzcR modulates antibiotic resistance and quorum sensing in Pseudomonas aeruginosa, PloS One, 7, 10.1371/journal.pone.0038148
Ernebjerg, 2012, Distinct growth strategies of soil bacteria as revealed by large-scale colony tracking, Appl. Environ. Microbiol., 78, 1345, 10.1128/AEM.06585-11
Fan, 2021, Cd induced biphasic response in soil alkaline phosphatase and changed soil bacterial community composition: the role of background Cd contamination and time as additional factors, Sci. Total Environ., 757, 143771, 10.1016/j.scitotenv.2020.143771
Ghani, 2014, Rhodotorula mucilaginosa, a quorum quenching yeast exhibiting lactonase activity isolated from a tropical shoreline, Sensors, 14, 6463, 10.3390/s140406463
Giller, 1998, Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review, Soil Biol. Biochem., 30, 1389, 10.1016/S0038-0717(97)00270-8
Goo, 2015, Control of bacterial metabolism by quorum sensing, Trends Microbiol., 23, 567, 10.1016/j.tim.2015.05.007
Grandclément, 2016, Quorum quenching: role in nature and applied developments, FEMS Microbiol. Rev., 40, 86, 10.1093/femsre/fuv038
Hao, 2021, Recent advances in exploring the heavy metal(loid) resistant microbiome, Comput. Struct. Biotechnol. J., 19, 94, 10.1016/j.csbj.2020.12.006
Hogan, 2004, A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology, Mol. Microbiol., 54, 1212, 10.1111/j.1365-2958.2004.04349.x
Leguina, 2019, Copper alters the physiology of tomato rhizospheric isolates of Papiliotrema laurentii, Sci. Hortic., 243, 376, 10.1016/j.scienta.2018.08.057
Leguina, 2018, Inactivation of bacterial quorum sensing signals N-acyl homoserine lactones is widespread in yeasts, Fungal Biol, 122, 52, 10.1016/j.funbio.2017.10.006
Lugtenberg, 2009, Plant-growth-promoting rhizobacteria, Annu. Rev. Microbiol., 63, 541, 10.1146/annurev.micro.62.081307.162918
Maurhofer, 1998, Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against Tobacco Necrosis Virus, Phytopathology, 88, 678, 10.1094/PHYTO.1998.88.7.678
McAlorin, 1965, The determination of glycerol, Anal. Chim. Acta, 32, 170, 10.1016/S0003-2670(00)88913-8
McGivney, 2018, Quorum sensing signals form complexes with Ag+ and Cu2+ cations, ACS Chem. Biol., 13, 894, 10.1021/acschembio.7b01000
Merkel, 2005, Presence and potential signaling function of N-acylethanolamines and their phospholipid precursors in the yeast Saccharomyces cerevisiae, Biochim. Biophys. Acta, 1734, 215, 10.1016/j.bbalip.2005.03.004
Oleńska, 2020, Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review, Sci. Total Environ., 743, 140682, 10.1016/j.scitotenv.2020.140682
Ortiz-Castro, 2019, Review: phytostimulation and root architectural responses to quorum-sensing signals and related molecules from rhizobacteria, Plant Sci., 284, 135, 10.1016/j.plantsci.2019.04.010
Rampioni, 2012, Functional characterization of the quorum sensing regulator RsaL in the plant-beneficial strain Pseudomonas putida WCS358, Appl. Environ. Microbiol., 78, 726, 10.1128/AEM.06442-11
Reimmann, 2002, Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1, Microbiology, 148, 923, 10.1099/00221287-148-4-923
Ren, 2016, Bacterial signals N-acyl homoserine lactones induce the changes of morphology and ethanol tolerance in <i<Saccharomyces cerevisiae, Amb. Express, 6, 117, 10.1186/s13568-016-0292-y
Ruiz, 2021, The architecture of a mixed fungal–bacterial biofilm is modulated by quorum‐sensing signals, Environ. Microbiol., 23, 2433, 10.1111/1462-2920.15444
Schaefer, 2016, Single-step method for β-galactosidase assays in Escherichia coli using a 96-well microplate reader, Anal. Biochem., 503, 56, 10.1016/j.ab.2016.03.017
Scherlach, 2020, Chemical mediators at the bacterial-fungal interface, Annu. Rev. Microbiol., 74, 267, 10.1146/annurev-micro-012420-081224
Scherlach, 2018, Mediators of mutualistic microbe–microbe interactions, Nat. Prod. Rep., 35, 303, 10.1039/C7NP00035A
Sharahi, 2019, Advanced strategies for combating bacterial biofilms, J. Cell. Physiol., 234, 14689, 10.1002/jcp.28225
Singh, 2019, Gene expression is influenced due to ‘nano’ and ‘ionic’ copper in pre-formed Pseudomonas aeruginosa biofilms, Environ. Res., 175, 367, 10.1016/j.envres.2019.05.034
Stepanovic, 2000, A modified microtiter-plate test for quantification of staphylococcal biofilm formation, J. Microbiol. Methods, 40, 175, 10.1016/S0167-7012(00)00122-6
Subramoni, 2009, PpoR is a conserved unpaired LuxR solo of Pseudomonas putida which binds N-acyl homoserine lactones, BMC Microbiol., 15, 125, 10.1186/1471-2180-9-125
Thaden, 2010, Quorum-Sensing regulation of a copper toxicity system in Pseudomonas aeruginosa, J. Bacteriol., 192, 2557, 10.1128/JB.01528-09
Thornhill, 2017, Cadmium ion inhibition of quorum signalling in Chromobacterium violaceum, Microbiology, 163, 1429, 10.1099/mic.0.000531
Tudi, 2021, Agriculture development, pesticide application and its impact on the environment, Int. J. Environ. Res. Publ. Health, 18, 1112, 10.3390/ijerph18031112
Vega, 2014, Nickel and cadmium ions inhibit quorum sensing and biofilm formation without affecting viability in Burkholderia multivorans, Int. Biodeterior. Biodegrad., 91, 82, 10.1016/j.ibiod.2014.03.013
Waite, 2006, Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles, BMC Genom., 7, 162, 10.1186/1471-2164-7-162
Waite, 2005, Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms, J. Bacteriol., 187, 6571, 10.1128/JB.187.18.6571-6576.2005
Xu, 2021, Assembly strategies of the wheat root-associated microbiome in soils contaminated with phenanthrene and copper, J. Hazard Mater., 412, 125340, 10.1016/j.jhazmat.2021.125340
Yan, 2021, Transcriptomic analysis reveals resistance mechanisms of Klebsiella michiganensis to copper toxicity under acidic conditions, Ecotoxicol. Environ. Saf., 211, 111919, 10.1016/j.ecoenv.2021.111919
