Copper detoxification machinery of the brain-eating amoeba Naegleria fowleri involves copper-translocating ATPase and the antioxidant system

Maria Grechnikova1, Kateřina Ženíšková1, Ronald Malych1, Jan Mach1, Robert Sutak1
1Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic

Tài liệu tham khảo

Adlard, 2008, Rapid restoration of cognition in Alzheimer's transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Aß, Neuron, 59, 43, 10.1016/j.neuron.2008.06.018 Ahmed, 2018, Environmental concentrations of copper, alone or in mixture with arsenic, can impact river sediment microbial community structure and functions, Front. Microbiol., 9, 1 Altschul, 1990, Basic local alignment search tool, J. Mol. Biol., 215, 403, 10.1016/S0022-2836(05)80360-2 Alvarez-Carreño, 2018, Structure, function and evolution of the hemerythrin-like domain superfamily, Protein Sci., 27, 848, 10.1002/pro.3374 Arbon, 2020, Adaptive iron utilization compensates for the lack of an inducible uptake system in Naegleria fowleri and represents a potential target for therapeutic intervention, PLoS Negl. Trop. Dis., 14, 1, 10.1371/journal.pntd.0007759 Arnér, 2000, Physiological functions of thioredoxin and thioredoxin reductase, Eur. J. Biochem., 267, 6102, 10.1046/j.1432-1327.2000.01701.x Aurrecoechea, 2011, AmoebaDB and MicrosporidiaDB: functional genomic resources for Amoebozoa and microsporidia species, Nucleic Acids Res., 39, 612, 10.1093/nar/gkq1006 Bailly, 2008, A phylogenomic profile of hemerythrins, the nonheme diiron binding respiratory proteins, BMC Evol. Biol., 8, 1, 10.1186/1471-2148-8-244 Bellini, 2018, The therapeutic strategies against Naegleria fowleri, Exp. Parasitol., 187, 1, 10.1016/j.exppara.2018.02.010 Bernsel, 2008, Prediction of membrane-protein topology from first principles, Proc. Natl. Acad. Sci. U. S. A., 105, 7177, 10.1073/pnas.0711151105 Biteau, 2003, ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin, Nature, 425, 980, 10.1038/nature02075 Brancaccio, 2017, [4Fe-4S] cluster assembly in mitochondria and its impairment by copper, J. Am. Chem. Soc., 139, 719, 10.1021/jacs.6b09567 Capdevila, 2011, Metallothionein protein evolution: a miniassay, J. Biol. Inorg. Chem., 16, 977, 10.1007/s00775-011-0798-3 Cox, 2014, Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ, Mol. Cell. Proteomics, 13, 2513, 10.1074/mcp.M113.031591 Cunha, 2007, Effects of copper and cadmium on cholinesterase and glutathione S-transferase activities of two marine gastropods (Monodonta lineata and Nucella lapillus), Comp. Biochem. Physiol. C Toxicol. Pharmacol., 145, 648, 10.1016/j.cbpc.2007.02.014 Ding, 2013, Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence, Cell Host Microbe, 13, 265, 10.1016/j.chom.2013.02.002 Ding, 2011, The copper regulon of the human fungal pathogen Cryptococcus neoformans H99, Mol. Microbiol., 81, 1560, 10.1111/j.1365-2958.2011.07794.x Ding, 2009, Metal ionophores - an emerging class of anticancer drugs, IUBMB Life, 61, 1013, 10.1002/iub.253 Dobson, 2015, CCTOP: a Consensus Constrained TOPology prediction web server, Nucleic Acids Res., 43, W408, 10.1093/nar/gkv451 Eyice, 2018, Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere, ISME J., 12, 145, 10.1038/ismej.2017.148 Fernando, 1992, Thioredoxin regenerates proteins inactivated by oxidative stress in endothelial cells, Eur. J. Biochem., 209, 917, 10.1111/j.1432-1033.1992.tb17363.x Festa, 2014, Exploiting innate immune cell activation of a copper-dependent antimicrobial agent during infection, Chem. Biol., 21, 977, 10.1016/j.chembiol.2014.06.009 Findlay, 2006, A novel role for human sulfiredoxin in the reversal of glutathionylation, Canc. Res., 66, 6800, 10.1158/0008-5472.CAN-06-0484 Flemming, 1989, Copper toxicity and chemistry in the environment: a review, Water. Air. Soil Pollut., 44, 143, 10.1007/BF00228784 Fulton, 1974, Axenic cultivation of Naegleria gruberi. Requirement for methionine, Exp. Cell Res., 88, 365, 10.1016/0014-4827(74)90253-5 Fung, 2013, Copper efflux is induced during anaerobic amino acid limitation in escherichia coli to protect iron-sulfur cluster enzymes and biogenesis, J. Bacteriol., 195, 4556, 10.1128/JB.00543-13 Gaetke, 2003, Copper toxicity, oxidative stress, and antioxidant nutrients, Toxicology, 189, 147, 10.1016/S0300-483X(03)00159-8 Garcia-Santamarina, 2017, Cryptococcus neoformans iron-sulfur protein biogenesis machinery is a novel layer of protection against Cu stress, mBio, 8, 1, 10.1128/mBio.01742-17 Gietz, 2007, High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method, Nat. Protoc., 2, 38, 10.1038/nprot.2007.15 Harwood, 2014, Lost in centrifugation: accounting for transporter protein losses in quantitative targeted absolute proteomics, Drug Metab. Dispos., 42, 1766, 10.1124/dmd.114.058446 Helsel, 2017, Chemical and functional properties of metal chelators that mobilize copper to elicit fungal killing of Cryptococcus neoformans, Metallomics, 9, 69, 10.1039/C6MT00172F Herman, 2020 Hodgkinson, 2012, Copper homeostasis at the host-pathogen interface, J. Biol. Chem., 287, 13549, 10.1074/jbc.R111.316406 Holmgren, 1985, Thioredoxin, Annu. Rev. Biochem., 54, 237, 10.1146/annurev.bi.54.070185.001321 Holmgren, 2010, Thioredoxin and thioredoxin reductase: current research with special reference to human disease, Biochem. Biophys. Res. Commun., 396, 120, 10.1016/j.bbrc.2010.03.083 Isah, 2020, Expression and copper binding properties of the N-terminal domain of copper P-type ATPases of African trypanosomes, Mol. Biochem. Parasitol., 235, 111245, 10.1016/j.molbiopara.2019.111245 Käll, 2004, A combined transmembrane topology and signal peptide prediction method, J. Mol. Biol., 338, 1027, 10.1016/j.jmb.2004.03.016 Kühlbrandt, 2004, Biology, structure and mechanism of P-type ATPases, Nat. Rev. Mol. Cell Biol., 5, 282, 10.1038/nrm1354 Kung, 2006, Proteomic survey of copper-binding proteins in Arabidopsis roots by immobilized metal affinity chromatography and mass spectrometry, Proteomics, 6, 2746, 10.1002/pmic.200500108 Letelier, 2006, Inhibition of cytosolic glutathione S-transferase activity from rat liver by copper, Chem. Biol. Interact., 164, 39, 10.1016/j.cbi.2006.08.013 Lutsenko, 2007, Biochemical basis of regulation of human copper-transporting ATPases, Arch. Biochem. Biophys., 463, 134, 10.1016/j.abb.2007.04.013 Mach, 2018, Iron economy in Naegleria gruberi reflects its metabolic flexibility, Int. J. Parasitol., 48, 719, 10.1016/j.ijpara.2018.03.005 Maciver, 2020, Is Naegleria fowleri an emerging parasite?, Trends Parasitol., 36, 19, 10.1016/j.pt.2019.10.008 Mackie, 2016, Host-imposed copper poisoning impacts fungal micronutrient acquisition during systemic Candida albicans infections, PLoS One, 11, 1, 10.1371/journal.pone.0158683 Macomber, 2009, The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity, Proc. Natl. Acad. Sci. U. S. A., 106, 8344, 10.1073/pnas.0812808106 Meade, 2019, P-type transport ATPases in Leishmania and Trypanosoma, Parasite, 26, 69, 10.1051/parasite/2019069 Moller, 1996, Structural organization, ion transport, and energy transduction of P-type ATPases, Biochim. Biophys. Acta, 1286, 1, 10.1016/0304-4157(95)00017-8 Mull, 2013, Improved method for the detection and quantification of Naegleria fowleri in water and sediment using immunomagnetic separation and real-time PCR, J. Parasitol. Res., 2013, 608367, 10.1155/2013/608367 Ogawa, 2001, Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1, EMBO J., 20, 2835, 10.1093/emboj/20.11.2835 Pearce, 1999, Toxicity of copper, cobalt, and nickel salts is dependent on histidine metabolism in the yeast Saccharomyces cerevisiae, J. Bacteriol., 181, 4774, 10.1128/JB.181.16.4774-4779.1999 Perez-Riverol, 2019, The PRIDE database and related tools and resources in 2019: improving support for quantification data, Nucleic Acids Res., 47, D442, 10.1093/nar/gky1106 Pesce, 2013, vol. 63, 79 1998 Rasoloson, 2004, Copper pathways in Plasmodium falciparum infected erythrocytes indicate an efflux role for the copper P-ATPase, Biochem. J., 381, 803, 10.1042/BJ20040335 Reeder, 2011, The antifungal mechanism of action of zinc pyrithione, Br. J. Dermatol., 165, 9, 10.1111/j.1365-2133.2011.10571.x Rhee, 2007, Molecular cloning and characterization of omega class glutathione S-transferase (GST-O) from the polychaete Neanthes succinea: biochemical comparison with theta class glutathione S-transferase (GST-T), Comp. Biochem. Physiol. C Toxicol. Pharmacol., 146, 471, 10.1016/j.cbpc.2007.05.003 Salazar-Medina, 2010, Inhibition by Cu2+ and Cd2+ of a Mu-class glutathione S-transferase from shrimp Litopenaeus vannamei, J. Biochem. Mol. Toxicol., 24, 218, 10.1002/jbt.20326 Sheldon, 2019, Metals as phagocyte antimicrobial effectors, Curr. Opin. Immunol., 60, 1, 10.1016/j.coi.2019.04.002 Shimizu, 2012, Binding of cysteine thiolate to the Fe(III) heme complex is critical for the function of heme sensor proteins, J. Inorg. Biochem., 108, 171, 10.1016/j.jinorgbio.2011.08.018 Siddiqui, 2016, Biology and pathogenesis of Naegleria fowleri, Acta Trop., 164, 375, 10.1016/j.actatropica.2016.09.009 Smith, 2017, Copper acquisition and utilization in fungi, Annu. Rev. Microbiol., 597, 10.1146/annurev-micro-030117-020444 Söding, 2005, The HHpred interactive server for protein homology detection and structure prediction, Nucleic Acids Res., 33, 244, 10.1093/nar/gki408 Solioz, 1996, CPx-type ATPases: a class of P-type ATPases that pump heavy metals, Trends Biochem. Sci., 21, 237, 10.1016/S0968-0004(96)20016-7 Song, 2015, 8-Hydroxyquinoline: a privileged structure with broad-ranging pharmacological potentials, Med. Chem. Commun., 6, 61, 10.1039/C4MD00284A Sykora, 1983, Occurrence and pathogenicity of Naegleria fowleri in artificially heated waters, Appl. Environ. Microbiol., 45, 974, 10.1128/aem.45.3.974-979.1983 Szczypka, 1997, Saccharomyces cerevisiae mutants altered in vacuole function are defective in copper detoxification and iron-responsive gene transcription, Yeast, 13, 1423, 10.1002/(SICI)1097-0061(199712)13:15<1423::AID-YEA190>3.0.CO;2-C Tyanova, 2016, The Perseus computational platform for comprehensive analysis of (prote)omics data, Nat. Methods, 13, 731, 10.1038/nmeth.3901 Vuilleumier, 2002, The elusive roles of bacterial glutathione S-transferases: new lessons from genomes, Appl. Microbiol. Biotechnol., 58, 138, 10.1007/s00253-001-0836-0 Weissman, 2000, The high copper tolerance of Candida albicans is mediated by a P-type ATPase, Proc. Natl. Acad. Sci. U. S. A., 97, 3520, 10.1073/pnas.97.7.3520 White, 2009, A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity, J. Biol. Chem., 284, 33949, 10.1074/jbc.M109.070201 Wiemann, 2017, Aspergillus fumigatus copper export machinery and reactive oxygen intermediate defense counter host copper-mediated oxidative antimicrobial offense, Cell Rep., 19, 1008, 10.1016/j.celrep.2017.04.019 Wu, 2010, Amino acid influence on copper binding to peptides: cysteine versus arginine, J. Am. Soc. Mass Spectrom., 21, 522, 10.1016/j.jasms.2009.12.020 Yang, 2018, Novel 8-hydroxyquinoline derivatives targeting β-amyloid aggregation, metal chelation and oxidative stress against Alzheimer's disease, Bioorganic Med. Chem., 26, 3191, 10.1016/j.bmc.2018.04.043 Yuan, 1997, Restriction of copper export in Saccharomyces cerevisiae to a late Golgi or post-Golgi compartment in the secretory pathway, J. Biol. Chem., 272, 25787, 10.1074/jbc.272.41.25787 Zhang, 1995, Heme binds to a short sequence that serves a regulatory function in diverse proteins, EMBO J., 14, 313, 10.1002/j.1460-2075.1995.tb07005.x