Copper-based MOF-74 material as effective acid catalyst in Friedel–Crafts acylation of anisole
Tài liệu tham khảo
Zhou, 2012, Introduction to metal–organic frameworks, Chem. Rev., 112, 673, 10.1021/cr300014x
Neogi, 2009, Knoevenagel condensation and cyanosilylation reactions catalyzed by an MOF containing coordinatively unsaturated Zn(II) centers, J. Mol. Catal. A: Chem., 299, 1, 10.1016/j.molcata.2008.10.008
Zou, 2006, Adsorption properties, and catalytic activity of 3D porous metal–organic frameworks composed of cubic building blocks and alkali-metal ions, Angew. Chem. Int. Ed. Engl., 45, 2542, 10.1002/anie.200503923
Gándara, 2008, An indium layered MOF as recyclable Lewis acid catalyst, Chem. Mater., 20, 72, 10.1021/cm071079a
Alkordi, 2008, Zeolite-like metal–organic frameworks (ZMOFs) as platforms for applications: on metalloporphyrin-based catalysts, J. Am. Chem. Soc., 130, 12639, 10.1021/ja804703w
Schröder, 2008, Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: a solid-state reference system for surfactant-stabilized ruthenium colloids, J. Am. Chem. Soc., 130, 6119, 10.1021/ja078231u
Ma, 2009, Enantioselective catalysis with homochiral metal–organic frameworks, Chem. Soc. Rev., 38, 1248, 10.1039/b807083k
Gomez-Lor, 2002, In(2)(OH)(3)(BDC)(1.5) (BDC=1,4-benzendicarboxylate): an In(III) supramolecular 3D framework with catalytic activity, Inorg. Chem., 41, 2429, 10.1021/ic0111482
Navarro, 2006, H2, N2, CO, and CO2 sorption properties on a series of robust isoreticular sodalite type microporous coordination polymers, Inorg. Chem., 45, 2397, 10.1021/ic060049r
Llabrés i Xamena, 2007, MOFs as catalysts: activity, reusability and shape-selectivity of a Pd-containing MOF, J. Catal., 250, 294, 10.1016/j.jcat.2007.06.004
Zhang, 2009, Gold(III)–metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts, J. Catal., 265, 155, 10.1016/j.jcat.2009.04.021
Fujita, 1994, Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4′-bipyridine, J. Am. Chem. Soc., 116, 1151, 10.1021/ja00082a055
Schlichte, 2004, Improved synthesis, thermal stability and catalytic properties of the metal–organic framework compound Cu3(BTC)2, Microporous Mesoporous Mater., 73, 81, 10.1016/j.micromeso.2003.12.027
Horike, 2008, Size-selective Lewis-acid catalysis in a microporous metal–organic framework with exposed Mn2+ coordination sites, J. Am. Chem. Soc., 130, 5854, 10.1021/ja800669j
Tabares, 2001, Cooperative guest inclusion by a zeolite analogue coordination polymer. sorption behavior with gases and amine and group 1 metal salts, J. Am. Chem. Soc., 123, 383, 10.1021/ja002624a
Suslick, 2005, Microporous porphyrin solids, Acc. Chem. Res., 38, 283, 10.1021/ar040173j
Dhakshinamoorthy, 2009, Metal organic frameworks as efficient heterogeneous catalysts for the oxidation of benzylic compounds with t-butylhydroperoxide, J. Catal., 267, 1, 10.1016/j.jcat.2009.08.001
Yu, 2004, Construction of a microporous inorganic–organic hybrid compound with uranyl units, Chem. Commun., 2004
Mahata, 2006, Novel photocatalysts for the decomposition of organic dyes based on metal–organic framework compounds, J. Phys. Chem. B, 110, 13759, 10.1021/jp0622381
Nguyen, 2012, A zeolite imidazolate framework ZIF-8 catalyst for Friedel–Crafts acylation, Chin. J. Chem., 33, 688
Phan, 2010, MOF-5 as an efficient heterogeneous catalyst for Friedel–Crafts alkylation reactions, Appl. Catal. A: Gen., 382, 246, 10.1016/j.apcata.2010.04.053
Horcajada, 2007, Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores, Chem. Commun., 2820, 10.1039/B704325B
Ravon, 2008, MOFs as acid catalysts with shape selectivity properties, New J. Chem., 32, 937, 10.1039/b803953b
Opanasenko, 2013, Solid acid catalysts for coumarin synthesis by the Pechmann reaction-MOFs versus zeolites, ChemCatChem, 5, 1024, 10.1002/cctc.201200232
Opanasenko, 2013, Deactivation pathways of the catalytic activity of metal–organic frameworks in condensation reactions, ChemCatChem, 5, 1553, 10.1002/cctc.201200643
Opanasenko, 2013, Superior performance of metal–organic frameworks over zeolites as solid acid catalysts in the Prins reaction: green synthesis of nopol, ChemSusChem, 6, 865, 10.1002/cssc.201300032
Gore, 1964, vol. III, Part 1, 1
Corma, 2004, Issues in the synthesis of crystalline molecular sieves: towards the crystallization of low framework-density structures, Chem. Phys. Chem., 5, 304, 10.1002/cphc.200300997
Sartori, 2006, Use of solid catalysts in Friedel–Crafts acylation reactions, Chem. Rev., 106, 1077, 10.1021/cr040695c
Serrano, 2011, Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units, J. Catal., 279, 366, 10.1016/j.jcat.2011.02.007
Corma, 2010, Engineering metal organic frameworks for heterogeneous catalysis, Chem. Rev., 110, 4606, 10.1021/cr9003924
Shi, 2013, Atom-economic synthesis of optically active Warfarin anticoagulant over a Chiral MOF organocatalyst, Adv. Synth. Catal., 355, 2538, 10.1002/adsc.201300554
Sanz, 2013, Synthesis of a honeycomb-like Cu-based metal–organic framework and its carbon dioxide adsorption behaviour, Dalton Trans., 42, 2392, 10.1039/C2DT32138F
Brunauer, 1938, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309, 10.1021/ja01269a023
Jagiello, 2004, Comparison of DFT characterization methods based on N2, Ar, CO2 and H2 adsorption applied to carbons with various pore size distributions, Carbon, 42, 1227, 10.1016/j.carbon.2004.01.022
Serrano, 2009, Friedel–Crafts acylation of anisole over hybrid zeolitic-mesostructures materials, Appl. Catal. A: Gen., 359, 69, 10.1016/j.apcata.2009.02.013
Rosi, 2005, Rod packings and metal–organic frameworks constructed from rod-shaped secondary building units, J. Am. Chem. Soc., 127, 1504, 10.1021/ja045123o
Dietzel, 2008, Structural changes and coordinatively unsaturated metal atoms on dehydration of honeycomb analogous microporous metal–organic frameworks, Chem. Eur. J., 14, 2389, 10.1002/chem.200701370
Carson, 2009, Synthesis and structure characterization of copper terephthalate metal–organic frameworks, Eur. J. Inorg. Chem., 2338, 10.1002/ejic.200801224
Gunnewegh, 1996, MCM-41 type molecular sieves as catalysts for the Friedel–Crafts acylation of 2-methoxynaphthalene, J. Mol. Catal. A: Chem., 106, 151, 10.1016/1381-1169(95)00270-7
Patil, 2002, Benzoylation of anisole over borate zirconia solid acid catalyst, Catal. Commun., 3, 411, 10.1016/S1566-7367(02)00160-7
Bhattacharya, 1997, Selective benzoylation of naphthalene to 2-benzoylnaphthalene using zeolite H-beta catalysts, Appl. Catal. A: Gen., 150, 53, 10.1016/S0926-860X(96)00300-6
Martínez, 2008, Perfluorinated Nafion-modified SBA-15 materials for catalytic acylation of anisole, Appl. Catal. A: Gen., 347, 169, 10.1016/j.apcata.2008.06.015
Freese, 1999, Acylation of aromatic compounds on H-Beta zeolites, Catal. Today, 49, 237, 10.1016/S0920-5861(98)00429-5
Selvaraj, 2005, Synthesis of 2-acetylmethoxynaphtalene using mesoporous SO4-2/Al-MCM-41 molecular sieves, Microporous Mesoporous Mater., 81, 343, 10.1016/j.micromeso.2005.02.017
Lezcano-González, 2013, Identification of active surface species for Friedel–Crafts acylation and Koch carbonylation reactions by in situ solid-state NMR spectroscopy, Angew. Chem. Int. Ed., 52, 5138, 10.1002/anie.201209907