Copper and mercury induced oxidative stresses and antioxidant responses of Spirodela polyrhiza (L.) Schleid

Biochemistry and Biophysics Reports - Tập 23 - Trang 100781 - 2020
Hanwant Singh1, Deepak Kumar1, Vineet Soni1
1Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India

Tài liệu tham khảo

1996 Kim, 2019, Heavy metal toxicity: an update of chelating therapeutic strategies, J. Trace Elem. Med. Biol., 54, 226, 10.1016/j.jtemb.2019.05.003 Antoniadis, 2017, Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany, J. Environ. Manag., 192, 10.1016/j.jenvman.2016.04.036 Asgari Lajayer, 2017, Heavy metals in contaminated environment: destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants, Ecotoxicol. Environ. Saf., 377, 10.1016/j.ecoenv.2017.07.035 Mahar, 2016, Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review, Ecotoxicol. Environ. Saf., 111, 10.1016/j.ecoenv.2015.12.023 Tauqeer, 2016, Phytoremediation of heavy metals by Alternanthera bettzickiana: growth and physiological response, Ecotoxicol. Environ. Saf., 138, 10.1016/j.ecoenv.2015.12.031 Feng, 2017, Historical anthropogenic footprints in the distribution of threatened plants in China, Biol. Conserv., 3, 10.1016/j.biocon.2016.05.038 Souri, 2019, Heavy metals and photosynthesis: recent developments, photosynth. Product, Environ. Stress, 107 Houri, 2020, Heavy metals accumulation effects on the photosynthetic performance of geophytes in mediterranean reserve, J. King Saud Univ. Sci., 32, 874, 10.1016/j.jksus.2019.04.005 Singh, 2010, Metal accumulation and growth response in Vigna radiata L. inoculated with chromate tolerant rhizobacteria and grown on tannery sludge amended soil, Bull. Environ. Contam. Toxicol., 84, 118, 10.1007/s00128-009-9875-5 Pourrut, 2011, Lead-induced DNA damage in Vicia faba root cells: potential involvement of oxidative stress, Mutat. Res. Genet. Toxicol. Environ. Mutagen, 10.1016/j.mrgentox.2011.09.001 He, 2011, Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens, Physiol. Plantarum, 143, 50, 10.1111/j.1399-3054.2011.01487.x Carrasco-Gil, 2012, Influence of nitrate fertilization on Hg uptake and oxidative stress parameters in alfalfa plants cultivated in a Hg-polluted soil, Environ. Exp. Bot., 10.1016/j.envexpbot.2011.08.013 Chen, 2012, Toxicity assessment of simulated urban runoff containing polycyclic musks and cadmium in Carassius auratus using oxidative stress biomarkers, Environ. Pollut., 10.1016/j.envpol.2011.10.016 Ensley, 1994, Toxicity and metabolism of 2,4‐dichlorophenol by the aquatic angiosperm Lemna gibba, Environ. Toxicol. Chem., 10.1002/etc.5620130217 Shahid, 2014, Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots, J. Soils Sediments, 10.1007/s11368-013-0724-0 Opdenakker, 2012, Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAPKinase transcript levels, Environ. Exp. Bot., 10.1016/j.envexpbot.2012.04.003 Droppa, 1990, The role of copper in photosynthesis, CRC Crit. Rev. Plant Sci., 9, 111, 10.1080/07352689009382284 Shahbaz, 2015, Prioritization of copper for the use in photosynthetic electron transport in developing leaves of hybrid poplar, Front. Plant Sci., 407 Gul, 2018, Copper toxicity affects seed emergence, stand establishment and copper accumulation of soybean and its mitigation through biogas slurry, Int. J. Agric. Biol., 769 Christhuuthayam, 2018, Changes in biocemical constitution of Radish (Raphanus sativus L.) under copper toxicity, J. Plant Stress Physiol., 22 Llagostera, 2016, Effects of copper exposure on photosynthesis and growth of the seagrass cymodocea nodosa: an experimental assessment, Bull. Environ. Contam. Toxicol., 374, 10.1007/s00128-016-1863-y Marques, 2018, Copper toxicity on photosynthetic responses and root morphology of hymenaea courbaril L. (Caesalpinioideae), water, Air Soil Pollut., 5, 138, 10.1007/s11270-018-3769-2 Sawidis, 2018, Effect of mercury on pollen germination and tube growth in Lilium longiflorum, Protoplasma, 255, 819, 10.1007/s00709-017-1192-y Kapoor, 2016, Mercury-induced changes in growth , metal & ions uptake , photosynthetic pigments , osmoprotectants and antioxidant defence system in Raphanus sativus L . seedlings and role of steroid hormone in stress amelioration, J. Pharmacogn. Phytochem., 5, 259 Dong, 2020, Effects of Cu2+ and Hg2+ on growth and photosynthesis of two scenedesmus species, Pol. J. Environ. Stud., 29, 1129, 10.15244/pjoes/105977 Ling, 2010, Effect of mercury to seed germination, coleoptile growth and root elongation of four vegetables, Res. J. Phytochem., 4, 225, 10.3923/rjphyto.2010.225.233 Chen, 2015, Copper induced oxidative stresses, antioxidant responses and phytoreme, Sci. Rep., 5, 1 Mauchauffée, 2007, Use of sodium decanoate for selective precipitation of metals contained in industrial wastewater, Chemosphere, 69, 763, 10.1016/j.chemosphere.2007.05.006 Shammas, 2005, 103 Lazaridis, 2001, Flotation of metal-loaded clay anion exchangers. Part I: the case of chromates, Chemosphere, 42, 373, 10.1016/S0045-6535(00)00143-0 Smara, 2007, Removal of heavy metals from diluted mixtures by a hybrid ion-exchange/electrodialysis process, Separ. Purif. Technol., 57, 103, 10.1016/j.seppur.2007.03.012 Aliane, 2001, Removal of chromium from aqueous solution by complexation – ultrafiltration using a water-soluble macroligand, Water Res., 35, 2320, 10.1016/S0043-1354(00)00501-7 Raj, 2020, Biogenic synthesis of AgNPs employing Terminalia arjuna leaf extract and its efficacy towards catalytic degradation of organic dyes, Sci. Rep., 10, 9616, 10.1038/s41598-020-66851-8 Raj, 2018, Green synthesis and characterization of silver nanoparticles using Enicostemma axillare (Lam.) leaf extract, Biochem. Biophys. Res. Commun., 503, 2814, 10.1016/j.bbrc.2018.08.045 Ahn, 1999, Removal of ions in nickel electroplating rinse water using low-pressure nanofiltration, Desalination, 122, 77, 10.1016/S0011-9164(99)00029-6 Feng, 2007, Removal of metal ions from electroplating effluent by EDI process and recycle of purified water, Separ. Purif. Technol., 57, 257, 10.1016/j.seppur.2007.04.014 Kurniawan, 2006, Physico–chemical treatment techniques for wastewater laden with heavy metals, Chem. Eng. J., 118, 83, 10.1016/j.cej.2006.01.015 Sekomo, 2012, Heavy metal removal in duckweed and algae ponds as a polishing step for textile wastewater treatment, Ecol. Eng., 44, 102, 10.1016/j.ecoleng.2012.03.003 Miretzky, 2004, Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina), Chemosphere, 57, 997, 10.1016/j.chemosphere.2004.07.024 Cohen, 2006, Use of microbes for cost reduction of metal removal from metals and mining industry waste streams, J. Clean. Prod., 14, 1146, 10.1016/j.jclepro.2004.10.009 Aziz, 2008, Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone, Bioresour. Technol., 99, 1578, 10.1016/j.biortech.2007.04.007 Ashraf, 2019, Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils, Ecotoxicol. Environ. Saf., 174, 714, 10.1016/j.ecoenv.2019.02.068 Dhaliwal, 2020, Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review, Environ. Sci. Pollut. Res., 27, 1319, 10.1007/s11356-019-06967-1 Awa, 2020, Removal of heavy metals in contaminated soil by phytoremediation mechanism: a review, water, Air Soil Pollut., 231, 1, 10.1007/s11270-020-4426-0 Singh, 2019, Chromium phytoaccumulation and its impact on growth and photosynthetic pigments of Spirodela polyrrhiza (L.) Schleid. on exposure to tannery effluent, Environ. Sustain., 157, 10.1007/s42398-019-00062-4 Anand, 2019, Phytoremediation of heavy metals and pesticides present in water using aquatic macrophytes, 89 Eid, 2019, Bioaccumulation and translocation of nine heavy metals by eichhornia crassipes in Nile delta, Egypt: perspectives for phytoremediation, Int. J. Phytoremediation, 21, 821, 10.1080/15226514.2019.1566885 Venkateswarlu, 2019, Phytoremediation of heavy metal Copper ( II ) from aqueous environment by using aquatic macrophytes, Hydrilla Verticillata Pistia stratiot., 7, 390 Landolt, 1986, Biosystematic investigations in the family of duckweeds (lemnaceae). II: the family of lemnaceae: a monographic study. 1, veröffentlichungen des geobot. Institutes der ETH, stift. Rübel, Zürich Landolt, 1986, The family of lemnaceae--a monographic study: Cui, 2015, Growing duckweed for biofuel production: a review, Plant Biol., 17, 16, 10.1111/plb.12216 Oláh, 2014, Cadmium-induced turion formation of Spirodela polyrhiza (L.) Schleiden, Acta Biol. Szeged., 58, 103 Tong, 2004, Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation, Trends Plant Sci., 9, 7, 10.1016/j.tplants.2003.11.009 Javed, 2019, The effect of lead pollution on nutrient solution pH and concomitant changes in plant physiology of two contrasting Solanum melongena L. cultivars, Environ. Sci. Pollut. Res., 26, 34633, 10.1007/s11356-019-06575-z Sha, 2019, Ecotoxicology and Environmental Safety Toxic effects of Pb on Spirodela polyrhiza ( L .): subcellular distribution , chemical forms , morphological and physiological disorders, Ecotoxicol. Environ. Saf., 181, 146, 10.1016/j.ecoenv.2019.05.085 OECD, 2002, 22 Mitsou, 2006, Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide Propanil in the aquatic plant Lemna minor, Chemosphere, 62, 275, 10.1016/j.chemosphere.2005.05.026 Liu, 2008, Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of sedum alfredii, J. Integr. Plant Biol., 50, 129, 10.1111/j.1744-7909.2007.00608.x Lichtenthaler, 1987, Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 148, 350, 10.1016/0076-6879(87)48036-1 Zhao, 2000, Detection of chlorophyll pigment, 72 Alia, 1991, Proline accumulation under heavy metal stress, J. Plant Physiol., 138, 554, 10.1016/S0176-1617(11)80240-3 Giannopolitis, 1977, Superoxide dismutases, Plant Physiol., 59, 309, 10.1104/pp.59.2.309 Aebi, 1984, Catalase in vitro, 121, 10.1016/S0076-6879(84)05016-3 Lagriffoul, 1998, Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.), Plant Soil, 200, 241, 10.1023/A:1004346905592 Xue, 2018, The response of duckweed (Lemna minor L.) roots to Cd and its chemical forms, J. Chem., 2018, 7274020, 10.1155/2018/7274020 Smith, 1988, Use of aquatic macrophytes as a bioassay method to assess relative toxicity, uptake kinetics and accumulated forms of trace metals, Environ. Bioassay Tech. Their Appl. Proc. Conf. Lancaster, 1990, 345 Li, 2004, A novel response of wild-type duckweed (Lemna paucicostata Hegelm.) to heavy metals, Environ. Toxicol., 19, 95, 10.1002/tox.20000 Manios, 2003, The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus water, Ecol. Eng., 20, 65, 10.1016/S0925-8574(03)00004-1 Gajić, 2009, An assessment of the tolerance of Ligustrum ovalifolium Hassk. to traffic-generated Pb using physiological and biochemical markers, Ecotoxicol. Environ. Saf., 72, 1090, 10.1016/j.ecoenv.2009.01.010 Ewais, 1997, Effects of cadmium, nickel and lead on growth, chlorophyll content and proteins of weeds, Biol. Plant., 39, 403, 10.1023/A:1001084327343 Parmar, 2013, Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress, Bot. Stud., 54, 45, 10.1186/1999-3110-54-45 Mal, 2002, Effect of copper on growth of an aquatic macrophyte, Elodea canadensis, Environ. Pollut., 120, 307, 10.1016/S0269-7491(02)00146-X Sandmann, 1980, Copper-mediated lipid peroxidation processes in photosynthetic membranes, Plant Physiol., 66, 797, 10.1104/pp.66.5.797 Sallah-Ud-Din, 2017, Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress, Environ. Sci. Pollut. Res., 10.1007/s11356-017-9290-0 Delfine, 1999, Restrictions to carbon dioxide conductance and photosynthesis in spinach leaves recovering from salt stress, Plant Physiol., 119, 1101, 10.1104/pp.119.3.1101 Hou, 2007, Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor), Plant Physiol. Biochem., 62, 10.1016/j.plaphy.2006.12.005 Tewari, 2008, Amelioration of municipal sludge by Pistia stratiotes L.: role of antioxidant enzymes in detoxification of metals, Bioresour. Technol., 99, 8715, 10.1016/j.biortech.2008.04.018 Li, 2013, Cadmium accumulation, activities of antioxidant enzymes, and malondialdehyde (MDA) content in Pistia stratiotes L., Environ. Sci. Pollut. Res., 20, 1117, 10.1007/s11356-012-1054-2 Rama Devi, 1998, Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants, Plant Sci., 138, 157, 10.1016/S0168-9452(98)00161-7 Sheetal, 2016, Heavy metal accumulation and effects on growth, biomass and physiological processes in mustard, Indian J. Plant Physiol., 21, 219, 10.1007/s40502-016-0221-8 Rizvi, 2018, Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum, Ecotoxicol. Environ. Saf., 157, 9, 10.1016/j.ecoenv.2018.03.063 Amini, 2015, Proline accumulation and osmotic stress: an overview of P5CS gene in plants, Genet. Agric. Biotechnol. Inst. Tabarestan., 3, 44 Liang, 2013, Proline mechanisms of stress survival, Antioxidants Redox Signal., 19, 998, 10.1089/ars.2012.5074 Khalid, 2020, Efficacy of Alternanthera bettzickiana to remediate copper and cobalt contaminated soil physiological and biochemical alterations, Int. J. Environ. Res., 10.1007/s41742-020-00251-8 Demidchik, 2014, Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment, J. Exp. Bot., 10.1093/jxb/eru004 Mates, 2000, Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology, Toxicology, 153, 83, 10.1016/S0300-483X(00)00306-1 Farid, 2015, Exogenous application of ethylenediamminetetraacetic acid enhanced phytoremediation of cadmium by Brassica napus L., Int. J. Environ. Sci. Technol., 12, 3981, 10.1007/s13762-015-0831-0 Farid, 2016, Citric acid assisted phytoremediation of arsenic through Brassica napus L. Farid, 2017, Phyto-management of Cr-contaminated soils by sunflower hybrids: physiological and biochemical response and metal extractability under Cr stress, Environ. Sci. Pollut. Res., 10.1007/s11356-017-9247-3 Zhang, 2017, Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China, Chemosphere, 184, 278, 10.1016/j.chemosphere.2017.05.155 Farid, 2018, Glutamic acid assisted phyto-management of silver-contaminated soils through sunflower; physiological and biochemical response, Environ. Sci. Pollut. Res., 10.1007/s11356-018-2508-y