Copper-Induced Oligomerization of Ceruloplasmin

Crystallography Reports - Tập 66 - Trang 828-832 - 2021
M. V. Petoukhov1,2, A. V. Sokolov3, V. A. Kostevich3, V. R. Samygina1,4
1Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, Russia
2Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
3Institute of Experimental Medicine, St. Petersburg, Russia
4National Research Centre “Kurchatov Institute”, Moscow, Russia

Tóm tắt

Oligomerization of copper-containing ferroxidase of ceruloplasmin in the presence of protein-unbound copper in a solution has been investigated by small-angle X-ray scattering (SAXS). Ceruloplasmin is a monomer with a molecular weight of ~132 kDa. Copper chloride added in a concentration of 10 μM leads to dimerization of 60% of protein. According to the analysis of intersubunit contacts, dimerization can prevent the formation of protein‒protein complexes of ceruloplasmin with leukocyte proteins like myeloperoxidase and eosinophil peroxidase. The formation of these complexes is a part of organism’s protective response to inflammatory processes. In addition, dimeric ceruloplasmin probably loses its ability to bind and oxidize one of substrates p-phenylenediamine.

Tài liệu tham khảo

F. Chiti and C. M. Dobson, Annu. Rev. Biochem. 75, 333 (2006). https://doi.org/10.1146/annurev.biochem.75.101304.123901 C. Soto, Nat. Rev. Neurosci. 4, 49 (2003). https://doi.org/10.1038/nrn1007 Kh. Y. S. Hedberga, I. Dobryden, H. Chaudhary, et al., Colloids Surf. B: Biointerfaces 173, 751 (2019). https://doi.org/10.1016/j.colsurfb.2018.10.061 M. J. Tamás, S. K. Sharma, S. Ibstedt, Th. Jacobson, et al., Biomolecules 4, 252 (2014). https://doi.org/10.3390/biom4010252 C. S. Atwood, R. D. Moir, X. Huang, et al., J. Biol. Chem. 273, 12817 (1998). https://doi.org/10.1074/jbc.273.21.12817 S. R. Paik, H. J. Shin, J. H. Lee, et al., Biochem. J. 340, 821 (1999). C. Morgan, M. Gelfand, C. Atreya, et al., J. Mol. Biol. 309, 339 (2001). https://doi.org/10.1006/jmbi.2001.4661 D. R. Brown, K. Qin, J. W. Herms, et al., Nature (London) 390, 684 (1997). https://doi.org/10.1038/37783 G. Multhaup, A. Schlicksupp, L. Hesse, et al., Science 271, 1406 (1996). https://doi.org/10.1126/science.271.5254.1406 R. Squitti, C. C. Quattrocchi, C. Salustri, et al., Prion 2, 23 (2008). https://doi.org/10.4161/pri.2.1.6297 M. S. Lindely, Metallomics 8, 887 (2016). https://doi.org/10.1039/C6MT00103C A. Sabatucci, P. Vachette, V. B. Vasilyev, et al., J. Mol. Biol. 371, 1038 (2007). https://doi.org/10.1016/j.jmb.2007.05.089 V. R. Samygina, A. V. Sokolov, G. Bourenkov, et al., PlosOne 8, e67145 (2013). https://doi.org/10.1371/journal.pone.0067145 A. V. Sokolov, L. A. Dadinova, M. V. Petoukhov, et al., Biochemistry (Moscow) 83, 701 (2018). https://doi.org/10.1134/S000629791806007X V. R. Samygina, A. V. Sokolov, M. O. Pulina, et al., Crystallogr. Rep. 53, 655 (2008). https://doi.org/10.1134/S1063774508040172 M. Sato, M. L. Schilsky, R. J. Stockert, et al., J. Biol. Chem. 265, 2533 (1990). V. R. Samygina, A. V. Sokolov, G. Bourenkov, et al., Metallomics 9, 1828 (2017). https://doi.org/10.1039/C7MT00157F A. V. Sokolov, V. A. Kostevich, D. N. Romaniko, et al., Biokhimiya 77, 775 (2012). G. S. Peters, O. A. Zakharchenko, P. V. Konarev, et al., Nucl. Instrum. Methods Phys. Res. A 945, 162616 (2019). https://doi.org/10.1016/j.nima.2019.162616 C. E. Blanchet, A. Spilotros, F. Schwemmer, et al., J. Appl. Crystallogr. 48, 431 (2015). https://doi.org/10.1107/S160057671500254X L. A. Feigin and D. I. Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Plenum, New York, 1987). https://doi.org/10.1007/978-1-4757-6624-0 P. V. Konarev, V. V. Volkov, A. V. Sokolova, et al., J. Appl. Crystallogr. 36, 1277 (2003). https://doi.org/10.1107/S0021889803012779 A. Guinier, Ann. Phys. (Paris). 12, 161 (1939). https://doi.org/10.1051/anphys/193911120161 D. I. Svergun, J. Appl. Crystallogr. 25, 495 (1992). https://doi.org/10.1107/S0021889892001663 G. Porod, General Theory. In Small-Angle X-Ray Scattering, Ed. by O. Glatter and O. Kratky (Academic Press, London, 1982), p. 17. M. V. Petoukhov, D. Franke, A. V. Shkumatov, et al., J. Appl. Crystallogr. 45, 342 (2012). https://doi.org/10.1107/S0021889812007662 S. Boivin, M. Aouffen, A. Founier, et al., Biochem. Biophys. Res. Commun. 288, 1006 (2001). https://doi.org/10.1006/bbrc.2001.5881 D. Kozakov, D. R. Hall, B. Xia, et al., Nature Protocols 12, 255 (2017). https://doi.org/10.1038/nprot.2016.169 H. A. Ravin, J. Lab. Clin. Med. 58, 161 (1961). E. Y. Varfolomeeva, E. V. Semenova, A. V. Sokolov, et al., Free Radical Res. 50, 909 (2016). https://doi.org/10.1080/10715762.2016.1197395 M. J. Tamás, B. Fauvet, Ph. Christen, et al., Curr. Genet. 64, 177 (2018). https://doi.org/10.1007/s00294-017-0748-x Zh. Wu, A. Fernandez-Lima, and D. H. Russel, J. Am. Soc. Mass. Spectr. 21, 522 (2010). https://doi.org/10.1016/j.jasms.2009.12.020 A. V. Sokolov, V. A. Kostevich, E. T. Zakharova, et al., Free Radical Res. 46, 800 (2015). https://doi.org/10.3109/10715762.2015.1005615 O. M. Panasenko, T. I. Torkhovskaya, I. V. Gorudko, et al., Biochemistry (Moscow). 85 (Suppl. 1), 34 (2020). https://doi.org/10.1134/S0006297920140035