Coping with excess salt: adaptive functions of extrarenalosmoregulatory organs in vertebrates

Zoology - Tập 104 Số 3-4 - Trang 209-220 - 2001
Jan‐Peter Hildebrandt1
1Zoological Institute, Ernst-Moritz-Arndt-University, Greifswald, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Angel, 1991, The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation, Biochim. Biophys. Acta, 1072, 129

Aronson, 1982, Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles, Nature, 299, 161, 10.1038/299161a0

Barrnett, 1983, Avian salt gland: a model for the study of membrane biogenesis, Meth. Enzymol., 96, 627, 10.1016/S0076-6879(83)96055-X

Bentz, 1995, Adaptive differentiation of avian exocrine cells alters their pHi response to mAChR activation, Am. J. Physiol., 268, C944, 10.1152/ajpcell.1995.268.4.C944

Bentz, 1999, Cytosolic pH affects DNA-synthesis in nasal gland cells of osmotically stressed ducklings, Anas platyrhynchos, Zoology, 102, 10

Boldyrev, 1995, Characterization of the subunit isoforms of duck salt gland Na/K adenosine triphosphatase, Biochem. Biophys. Res. Commun., 216, 1048, 10.1006/bbrc.1995.2726

Butler, 1991, Configuration of the medial and lateral segments of duck (Anas platyrhynchos) salt glands, J. Morphol., 207, 201, 10.1002/jmor.1052070211

Cahill, 1995, Signal uptake by the c-fos serum response element, 39

Casotti, 1997, Ionic composition of urate-containing spheres in the urine of domestic fowl, Comp. Biochem. Physiol., A 118, 585, 10.1016/S0300-9629(96)00482-3

Casotti, 2000, Functional morphology of the avian medullary cone, Am. J. Physiol. Regulatory Integrative Com. Physiol., 279, R1722, 10.1152/ajpregu.2000.279.5.R1722

Clauss, 1988, Modulation of Na and Cl transport by mineralocorticoids, Comp. Biochem. Physiol., A 90, 583, 10.1016/0300-9629(88)90671-8

Dantzler, 1989

Dantzler, 1980, Comparative nephron function in reptiles, birds, and mammals, Am. J. Physiol., 239, R197

Denton, 1996, Hypothalamic integration of body fluid regulation, Proc. Natl. Acad. Sci. USA, 93, 7397, 10.1073/pnas.93.14.7397

Elbrønd, 1997, Correlation of structure and function in the chicken lower intestine (coprodeum): a review, Comp. Biochem. Physiol., A 118, 243, 10.1016/S0300-9629(97)00075-3

Ernst, 1969, The development of surface specialization in the secretory epithelium of the avian salt gland in response to osmotic stress, J. Cell. Biol., 40, 305, 10.1083/jcb.40.2.305

Ernst, 1977, Basolateral plasma membrane localization of ouabain-sensitive sodium transport sites in the secretory epithelium of the avian salt gland, J. Cell. Biol., 75, 74, 10.1083/jcb.75.1.74

Ernst, 1982, Ions and energy metabolism in duck salt-gland: possible role of furosemide-sensitive co-transport of sodium chloride, J. Physiol., 325, 333, 10.1113/jphysiol.1982.sp014153

Ernst, 1994, Salt stress increases abundance and glycosylation of CFTR localized at apical surfaces of salt gland secretory cells, Am. J. Physiol., 267, C990, 10.1152/ajpcell.1994.267.4.C990

Fänge, 1958, The salt gland of the herring gull, Biol. Bull. (Woods Hole), 115, 162, 10.2307/1539022

Fisher, 1983, Muscarinic stimulation of phospholipid turnover in dissociated avian salt gland cells, FEBS Lett., 155, 43, 10.1016/0014-5793(83)80205-1

Fletcher, 1967, Sequential changes in the adenosinetriphosphatase activity and the electrolyte secretory capacity of the nasal glands of the duck (Anas platyrhynchos) during the period of adaptation to hypertonic saline, J. Exp. Biol., 47, 375, 10.1242/jeb.47.3.375a

Gerstberger, 1988, Functional vasoactive intestinal polypeptide (VIP)-system in salt glands of the Pekin duck, Cell. Tiss. Res., 252, 39, 10.1007/BF00213824

Gerstberger, 1993, Fine structure, innervation and functional control of avian salt glands, Int. Rev. Cytol., 144, 129, 10.1016/S0074-7696(08)61515-6

Gerstberger, 1984, Salt gland and kidney responses to intracerebral osmotic stimulation in salt and water-loaded ducks, Am. J. Physiol., 247, R1022

Gerstberger, 1984, Cephalic osmoreceptor control of salt gland activation and inhibition in the salt adapted duck, J. Comp. Physiol., B 154, 449, 10.1007/BF02515149

Gilman, 1986, Multiple protein binding sites in the 5′-flanking region regulate c-fos expression, Mol. Cell. Biol., 6, 4305, 10.1128/MCB.6.12.4305

Grinstein, 1989, Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation, Biochim. Biophys. Acta, 988, 73, 10.1016/0304-4157(89)90004-X

Hammel, 1980, Properties of body fluids influencing salt gland secretion in Pekin ducks, Am. J. Physiol., 239, R489

Han, 1994, A MAP kinase targeted by endotoxin and hyperosmolality in mammalian cells, Science, 265, 808, 10.1126/science.7914033

Hanwell, 1973, The effect of post-ganglionic denervation on functional hypertrophy in the salt gland of the goose during adaptation to salt water, J. Physiol., 234, 78P

Hanwell, 1975, The control of adaptive hypertrophy in the salt glands of geese and ducks, J. Physiol., 248, 193, 10.1113/jphysiol.1975.sp010969

Hanwell, 1971, Salt-gland secretion and blood flow in the goose, J. Physiol., 213, 373, 10.1113/jphysiol.1971.sp009387

Hanwell, 1972, Nature and location of the receptors for salt-gland secretion in the goose, J. Physiol., 226, 453, 10.1113/jphysiol.1972.sp009993

Hildebrandt, 1995, Lysophosphatidic acid induces inositol phosphate and calcium signals in exocrine cells from the avian nasal salt gland, J. Membr. Biol., 144, 49, 10.1007/BF00238416

Hildebrandt, 1997, Changes in Na/K-ATPase expression during adaptive cell differentiation in avian nasal salt gland, J. Exp. Biol., 200, 1895, 10.1242/jeb.200.13.1895

Hildebrandt, 2000, Ca2+ and p38 MAP kinase regulate mAChR-mediated c-Fos expression in avian exocrine cells, Am. J. Physiol. Cell. Physiol., 278, C879, 10.1152/ajpcell.2000.278.5.C879

Hildebrandt, 1991, Inositol phosphates and [Ca2+]i signals in a differentiating exocrine cell, Am. J. Physiol., 261, C210, 10.1152/ajpcell.1991.261.2.C210

Hildebrandt, 1992, Inositol 1,4,5- trisphosphate metabolism and its calcium sensitivity in exocrine cells from the avian salt gland, Biochem. J., 282, 703, 10.1042/bj2820703

Hildebrandt, 1993, A Gq-type G protein couples muscarinic receptors to inositol phosphate and calcium signaling in exocrine cells from the avian salt gland, J. Membr. Biol., 133, 183, 10.1007/BF00233798

Hildebrandt, 1994, Muscarinic receptor characterization in differentiating avian exocrine cells, Am. J. Physiol., 266, R674

Hildebrandt, 1998, In vivo and in vitro induction of c-fos in avian exocrine salt gland cells, Am. J. Physiol., 275, C951, 10.1152/ajpcell.1998.275.4.C951

Hootman, 1981, Characterization of muscarinic acetylcholine receptors in the avian salt gland, J. Cell. Biol., 91, 781, 10.1083/jcb.91.3.781

Hootman, 1982, [3H]QNB binding to muscarinic receptors in intact avian salt gland cells, Am. J. Physiol., 24, C254, 10.1152/ajpcell.1982.243.5.C254

Hopkins, 1976, Sodium- and potassium-activated adenosine triphosphatase of the duck (Anas platyrhynchos), J. Biol. Chem., 251, 4365, 10.1016/S0021-9258(17)33305-7

Hossler, 1982, On the mechanism of plasma membrane turnover in the salt gland of ducklings, Cell. Tiss. Res., 226, 531, 10.1007/BF00214782

Hossler, 1978, Ultrastructural, cyto- and biochemical observations during turnover of plasma membrane in duck salt gland, Cell. Tiss. Res., 188, 299, 10.1007/BF00222639

Jahnknecht, 1997, Convergence of MAP kinase pathways on the ternary complex factor Sap-1a, EMBO J., 16, 1620, 10.1093/emboj/16.7.1620

Keely, 1997, Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K, Nature, 390, 632, 10.1038/37656

Kühnel, 1972, On the innervation of the salt gland, Z. Zellforsch., 134, 435, 10.1007/BF00307177

Lingham, 1980, The induction of (Na++K+)-ATPase in the salt gland of the duck, Biochim. Biophys. Acta., 601, 229, 10.1016/0005-2736(80)90527-1

Lowy, 1985, Primary culture of duck salt gland. II. Neurohumoral stimulation of active transport, Am. J. Physiol., 249, C41, 10.1152/ajpcell.1985.249.1.C41

Lowy, 1989, Mechanism of ion transport by avian salt gland primary cell cultures, Am. J. Physiol., 256, R1184

Martin, 2000, Ligands presumed to label high affinity and low affinity ATP binding sites do not interact in an (alpha beta)2 diprotomer in duck nasal salt gland Na+,K+- ATPase, nor do the sites coexist in the native enzyme, J. Biol. Chem., 275, 24512, 10.1074/jbc.M003179200

Martin, 1994, Vasoactive intestinal peptide stimulates a cAMP-mediated Cl- current in avian salt gland cells, Regul. Pept., 51, 205, 10.1016/0167-0115(94)90055-8

Martin, 1994, Potentiation of Ca2+-activated secretory activity by a cAMP-mediated mechanism in avian salt gland cells, Am. J. Physiol., 267, C255, 10.1152/ajpcell.1994.267.1.C255

Mazurkiewicz, 1985, Organotypic cultures of the avian salt gland: biogenesis of membrane proteins, J. Cell Sci., 48, 75, 10.1242/jcs.48.1.75

McFarland, 1965, The activity of selected soluble enzymes in the avian nasal salt gland, J. Cell Comp. Physiol., 65, 237, 10.1002/jcp.1030650210

Merchant, 1985, Correlation of Na+,K+-ATPase content and plasma membrane surface area in adapted and de-adapted salt glands of ducklings, J. Cell Sci., 78, 233, 10.1242/jcs.78.1.233

Moolenaar, 1986, Effects of growth factors on intracellular pH regulation, Annu. Rev. Physiol., 48, 363, 10.1146/annurev.ph.48.030186.002051

Nahas, 1996, Tyrosine phosphorylation and activation of a new mitogen-activated protein (MAP)-kinase cascade in human neutrophils stimulated with various agonists, Biochem. J., 318, 247, 10.1042/bj3180247

Nakayama, 1998, Cip/Kip cyclin-dependent kinase inhibitors: brakes of the cell cycle engine during development, Bioessays, 20, 1020, 10.1002/(SICI)1521-1878(199812)20:12<1020::AID-BIES8>3.3.CO;2-4

Nishizuka, 1988, The molecular heterogeneity of protein kinase C and its implications for cellular regulation, Nature, 334, 661, 10.1038/334661a0

Pittard, 1973, The effect of denervation on genotypic and compensatory growth of the immature avian salt gland, J. Anat., 114, 303

Price, 1996, The p38 and ERK MAP kinase pathways cooperate to activate ternary complex factors and c-fos transcription in response to UV light, EMBO J., 15, 6552, 10.1002/j.1460-2075.1996.tb01046.x

Rickert, 2000, Leukocytes navigate by compass: roles of PI3Kγ and its lipid products, Trends. Cell Biol., 10, 466, 10.1016/S0962-8924(00)01841-9

Santiago-Calvo, 1964, The chromatographic separation of polyphosphoinositides and studies on their turnover in various tissues, Biochim. Biophys. Acta., 84, 550

Sardet, 1990, Growth factors induce phosphorylation of the Na+/H+ antiporter, a glycoprotein of 110 kD, Science, 247, 723, 10.1126/science.2154036

Sarras, 1985, Plasma membrane biogenesis in the avian salt gland: a biochemical and quantitative electron microscopic study, Am. J. Anat., 174, 45, 10.1002/aja.1001740105

Schmidt-Nielsen, 1960, The salt-secreting gland of marine birds, Circulation, 21, 955, 10.1161/01.CIR.21.5.955

Scothorne, 1959, The nasal glands of birds: A histological and histochemical study of the inactive gland in the domestic duck, J. Anat. Lond., 93, 246

Sheng, 1991, CREB: a Ca2+-regulated transcription factor phosphorylated by calmodulin-dependent kinase, Science, 252, 1427, 10.1126/science.1646483

Shuttleworth, 1987, Salt gland function in osmoregulation in terrestrial and aquatic environments, 537

Shuttleworth, 1995, Intracellular signals controlling ionic and acid-base regulation in avian nasal gland cells, Vol. 22, 185

Shuttleworth, 1996, Arachidonic acid activates the noncapacitative entry of Ca2+ during [Ca2+]i oscillations, J. Biol. Chem., 271, 21720, 10.1074/jbc.271.36.21720

Shuttleworth, 1999, Vertebrate salt glands: short- and long-term regulation of function, J. Exp. Zool., 283, 689, 10.1002/(SICI)1097-010X(19990601)283:7<689::AID-JEZ7>3.0.CO;2-T

Shuttleworth, 1989, Intracellular [Ca2+] and inositol phosphates in avian nasal gland cells, Am. J. Physiol., 257, C1020, 10.1152/ajpcell.1989.257.5.C1020

Shuttleworth, 1996, Ca2+ entry modulates oscillation frequency by triggering Ca2+ release, Biochem. J., 313, 815, 10.1042/bj3130815

Shuttleworth, 1992, Changes in pHi associated with activation of ion secretion in avian nasal salt gland cells, Am. J. Physiol., 262, C221, 10.1152/ajpcell.1992.262.1.C221

Snider, 1986, Muscarinic receptor-stimulated Ca2+ signaling and inositol lipid metabolism in avian salt gland cells, Biochim. Biophys. Acta, 889, 216, 10.1016/0167-4889(86)90107-2

Soltoff, 1988, Mitogens and ion fluxes, Annu. Rev. Physiol., 50, 207, 10.1146/annurev.ph.50.030188.001231

Spannhof, 1967, Untersuchungen zur Genese einiger Enzyme in den Salzdrüsen junger Sturmmöven, Acta Biol. Med. German., 19, 137

Stainer, 1970, Changes in glycolytic enzyme activity in the duck (Anas platyrhynchos) nasal gland during the period of adaptation to salt water, Comp. Biochem. Physiol., 37, 257, 10.1016/0010-406X(70)90551-7

Stewart, 1976, Induction of the catalytic protein of (Na++K+)-ATPase in the salt gland of the duck, Biochim. Biophys. Acta, 419, 150, 10.1016/0005-2736(76)90379-5

Stuenkel, 1990, Multiple calcium mobilization pathways in single avian salt gland cells, Am. J. Physiol., 258, C289, 10.1152/ajpcell.1990.258.2.C289

Takemura, 1989, Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells, J. Biol. Chem., 264, 12266, 10.1016/S0021-9258(18)63852-9

Technau, 1936, Die Nasendrüse der Vögel. Zugleich ein Beitrag zur Morphologie der Nasenhöhle, J. Ornithol., 48, 511, 10.1007/BF01951013

Thomas, 1997, The ecophysiological role of the avian lower gastrointestinal tract, Comp. Biochem. Physiol., A 118, 247, 10.1016/S0300-9629(96)00300-3

Thompson, 1995, L-type voltage-sensitive Ca2+ channel activation regulates c-fos transcription at multiple levels, J. Biol. Chem., 270, 4224, 10.1074/jbc.270.9.4224

Torchia, 1992, The Na-K-Cl cotransporter of avian salt gland. Phosphorylation in response to cAMP-dependent and calcium-dependent secretogogues, J. Biol. Chem., 267, 25444, 10.1016/S0021-9258(19)74061-7

Treisman, 1986, Identification of a protein-binding site that mediates transcription response of the c-fos gene to serum factors, Cell, 46, 567, 10.1016/0092-8674(86)90882-2

Trejo, 1991, C-fos and c-jun are induced by muscarinic receptor activation of protein kinase C but are differentially regulated by intracellular calcium, J. Biol. Chem., 266, 7876, 10.1016/S0021-9258(20)89531-3

Tse, 1993, Structure/function studies of the epithelial isoforms of the mammalian Na+/H+ exchanger gene family, J. Membr. Biol., 135, 93, 10.1007/BF00231435

Wakabayashi, 1994, Growth factor activation and “H+-sensing” of the Na+/H+ exchanger isoform 1 (NHE1), J. Biol. Chem., 269, 5583, 10.1016/S0021-9258(17)37501-4

Wang, 1996, Voltage-insensitive Ca2+ channels and Ca2+/calmodulin-dependent protein kinases propagate signals from endothelin-1 receptors to the c-fos promoter, Mol. Cell. Biol., 16, 5915, 10.1128/MCB.16.10.5915

Zheng, 1994, Activation of phosphoinositide 3-kinase activity by Cdc42Hs binding to p85, J. Biol. Chem., 269, 18727, 10.1016/S0021-9258(17)32226-3