Copeptin response to hypoglycemic stress is linked to prolactin activation in children

Pituitary - 2020
Juliana B. Drummond1, Beatriz S. Soares1, William Pedrosa2, Erica L. M. Vieira3, Antonio L. Teixeira4,3, Mirjam Christ-Crain5, Antonio Ribeiro-Oliveira1
1Laboratory of Endocrinology, Federal University of Minas Gerais, Belo Horizonte, Brazil
2Hermes Pardini Institute, Belo Horizonte, Brazil
3Interdisciplinary Laboratory of Medical Investigation, Federal University of Minas Gerais, Belo Horizonte, Brazil
4Immunopsychiatry Laboratory & Neuropsychiatry Program, Department of Psychiatry & Behavioral Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA
5University Hospital of Basel, Basel, Switzerland

Tóm tắt

The physiological role of arginine vasopressin (AVP) in the acute stress response in humans and especially in children is unclear. The aim of this study was to explore the interaction between copeptin, a well-established surrogate marker of AVP release, and anterior pituitary hormone activation in response to acute hypoglycemic stress in children and adolescents. We conducted an exploratory single center study involving 77 children and adolescents undergoing insulin-induced hypoglycemia. Blood levels of copeptin, ACTH, cortisol, GH, prolactin, interleukin-6 (IL-6), adrenaline and noradrenaline were determined at baseline and after insulin-induced hypoglycemia. Basal plasma levels of copeptin (median: 5.2 pmol/L) increased significantly after hypoglycemia (median 9.7 pmol/L; P < 0.0001). Subjects with insufficient HPA axis response or severe GH deficiency had lower hypoglycemia-induced copeptin increase (median: 2.3 pmol/L) compared with individuals with intact pituitary response (median: 5.2 pmol/L, P = 0.02). Copeptin increase correlated significantly with the maximal increase of ACTH (rs = 0.30; P = 0.010), cortisol (rs = 0.33; P = 0.003), prolactin (rs = 0.25; P = 0.03), IL-6 (rs = 0.35; P = 0.008) and with BMI-SDS (rs = − 0.28, P = 0.01). In multivariate regression analysis, prolactin increase was the only independent variable associated with copeptin increase (P = 0.0004). Our data indicate that: (1) hypoglycemic stress elicits a marked copeptin response in children and adolescents, pointing out its role as an acute stress marker in this population; (2) stress-induced AVP/copeptin release is associated with anterior pituitary activation, mainly a prolactin response.

Từ khóa


Tài liệu tham khảo

Christ-Crain M, Fenske W (2016) Copeptin in the diagnosis of vasopressin-dependent disorders of fluid homeostasis. Nat Rev Endocrinol 12(3):168–176. https://doi.org/10.1038/nrendo.2015.224 Robertson GL (1987) Physiology of ADH secretion. Kidney Int Suppl 21:S20–26 Lolait SJ, Stewart LQ, Jessop DS, Young WS 3rd, O'Carroll AM (2007) The hypothalamic-pituitary-adrenal axis response to stress in mice lacking functional vasopressin V1b receptors. Endocrinology 148(2):849–856. https://doi.org/10.1210/en.2006-1309 Rivier C, Vale W (1983) Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature 305(5932):325–327 Gillies GE, Linton EA, Lowry PJ (1982) Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 299(5881):355–357 Paulmyer-Lacroix O, Anglade G, Grino M (1994) Insulin-induced hypoglycaemia increases colocalization of corticotrophin-releasing factor and arginine vasopressin mRNAs in the rat hypothalamic paraventricular nucleus. J Mol Endocrinol 13(3):313–320 Briski KP, Brandt JA (2000) Oxytocin and vasopressin neurones in principal and accessory hypothalamic magnocellular structures express Fos-immunoreactivity in response to acute glucose deprivation. J Neuroendocrinol 12(5):409–414 Samson WK, Schell DA (1995) Oxytocin and the anterior pituitary gland. Adv Exp Med Biol 395:355–364 Erturk E, Jaffe CA, Barkan AL (1998) Evaluation of the integrity of the hypothalamic-pituitary-adrenal axis by insulin hypoglycemia test. J Clin Endocrinol Metab 83(7):2350–2354. https://doi.org/10.1210/jcem.83.7.4980 Baylis PH, Heath DA (1977) Plasma-arginine-vasopressin response to insulin-induced hypoglycaemia. Lancet 2(8035):428–430 Baylis PH, Zerbe RL, Robertson GL (1981) Arginine vasopressin response to insulin-induced hypoglycemia in man. J Clin Endocrinol Metab 53(5):935–940. https://doi.org/10.1210/jcem-53-5-935 Erfurth EM, Hedner P, Lundin S, Ekman R (1996) Release of prolactin as well as adrenocorticotropin after administration of arginine-vasopressin to healthy men. Horm Metab Res 28(11):599–602. https://doi.org/10.1055/s-2007-979861 Korbonits M, Kaltsas G, Perry LA, Putignano P, Grossman AB, Besser GM, Trainer PJ (1999) The growth hormone secretagogue hexarelin stimulates the hypothalamo-pituitary-adrenal axis via arginine vasopressin. J Clin Endocrinol Metab 84(7):2489–2495. https://doi.org/10.1210/jcem.84.7.5811 Morgenthaler NG, Struck J, Alonso C, Bergmann A (2006) Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem 52(1):112–119. https://doi.org/10.1373/clinchem.2005.060038 Fenske WK, Schnyder I, Koch G, Walti C, Pfister M, Kopp P, Fassnacht M, Strauss K, Christ-Crain M (2018) Release and decay kinetics of copeptin vs AVP in response to osmotic alterations in healthy volunteers. J Clin Endocrinol Metab 103(2):505–513. https://doi.org/10.1210/jc.2017-01891 Fenske W, Refardt J, Chifu I, Schnyder I, Winzeler B, Drummond J, Ribeiro-Oliveira A Jr, Drescher T, Bilz S, Vogt DR, Malzahn U, Kroiss M, Christ E, Henzen C, Fischli S, Tonjes A, Mueller B, Schopohl J, Flitsch J, Brabant G, Fassnacht M, Christ-Crain M (2018) A copeptin-based approach in the diagnosis of diabetes insipidus. N Engl J Med 379(5):428–439. https://doi.org/10.1056/NEJMoa1803760 Balanescu S, Kopp P, Gaskill MB, Morgenthaler NG, Schindler C, Rutishauser J (2011) Correlation of plasma copeptin and vasopressin concentrations in hypo-, iso-, and hyperosmolar States. J Clin Endocrinol Metab 96(4):1046–1052. https://doi.org/10.1210/jc.2010-2499 Winzeler B, Zweifel C, Nigro N, Arici B, Bally M, Schuetz P, Blum CA, Kelly C, Berkmann S, Huber A, Gentili F, Zadeh G, Landolt H, Mariani L, Muller B, Christ-Crain M (2015) Postoperative copeptin concentration predicts diabetes insipidus after pituitary surgery. J Clin Endocrinol Metab 100(6):2275–2282. https://doi.org/10.1210/jc.2014-4527 Mueller C, Mockel M, Giannitsis E, Huber K, Mair J, Plebani M, Thygesen K, Jaffe AS, Lindahl B, Association, E.S.C.S.G.o.B.i.C.o.t.A.C.C (2018) Use of copeptin for rapid rule-out of acute myocardial infarction. Eur Heart J Acute Cardiovasc Care 7(6):570–576. https://doi.org/10.1177/2048872617710791 Koch A, Yagmur E, Hoss A, Buendgens L, Herbers U, Weiskirchen R, Koek GH, Trautwein C, Tacke F (2018) Clinical relevance of copeptin plasma levels as a biomarker of disease severity and mortality in critically ill patients. J Clin Lab Anal 32(9):e22614. https://doi.org/10.1002/jcla.22614 Smaradottir MI, Ritsinger V, Gyberg V, Norhammar A, Nasman P, Mellbin LG (2017) Copeptin in patients with acute myocardial infarction and newly detected glucose abnormalities—a marker of increased stress susceptibility? A report from the Glucose in Acute Myocardial Infarction cohort. Diabetes Vasc Dis Res 14(2):69–76. https://doi.org/10.1177/1479164116664490 Lattuca B, Sy V, Nguyen LS, Bernard M, Zeitouni M, Overtchouk P, Yan Y, Hammoudi N, Ceccaldi A, Collet JP, Kerneis M, Diallo A, Montalescot G, Silvain J (2018) Copeptin as a prognostic biomarker in acute myocardial infarction. Int J Cardiol. https://doi.org/10.1016/j.ijcard.2018.09.022 Wannamethee SG, Welsh P, Papacosta O, Lennon L, Whincup PH, Sattar N (2015) Copeptin, insulin resistance, and risk of incident diabetes in older men. J Clin Endocrinol Metab 100(9):3332–3339. https://doi.org/10.1210/JC.2015-2362 Kelen D, Andorka C, Szabo M, Alafuzoff A, Kaila K, Summanen M (2017) Serum copeptin and neuron specific enolase are markers of neonatal distress and long-term neurodevelopmental outcome. PLoS ONE 12(9):e0184593. https://doi.org/10.1371/journal.pone.0184593 Mohamed GB, Saed MA, Abdelhakeem AA, Salah K, Saed AM (2017) Predictive value of copeptin as a severity marker of community-acquired pneumonia. Electron Physician 9(7):4880–4885. https://doi.org/10.19082/4880 Sims CA, Guan Y, Bergey M, Jaffe R, Holmes-Maguire L, Martin N, Reilly P (2017) Arginine vasopressin, copeptin, and the development of relative AVP deficiency in hemorrhagic shock. Am J Surg 214(4):589–595. https://doi.org/10.1016/j.amjsurg.2017.06.015 Tang WZ, Wang XB, Li HT, Dong M, Ji X (2017) Serum copeptin predicts severity and recurrent stroke in ischemic stroke patients. Neurotox Res 32(3):420–425. https://doi.org/10.1007/s12640-017-9754-5 Katan M, Morgenthaler NG, Dixit KC, Rutishauser J, Brabant GE, Muller B, Christ-Crain M (2007) Anterior and posterior pituitary function testing with simultaneous insulin tolerance test and a novel copeptin assay. J Clin Endocrinol Metab 92(7):2640–2643. https://doi.org/10.1210/jc.2006-2046 Kacheva S, Kolk K, Morgenthaler NG, Brabant G, Karges W (2015) Gender-specific co-activation of arginine vasopressin and the hypothalamic-pituitary-adrenal axis during stress. Clin Endocrinol 82(4):570–576. https://doi.org/10.1111/cen.12608 Ajala O, Lockett H, Twine G, Flanagan DE (2012) Depth and duration of hypoglycaemia achieved during the insulin tolerance test. Eur J Endocrinol 167(1):59–65. https://doi.org/10.1530/EJE-12-0068 O'Grady MJ, Hensey C, Fallon M, Hoey H, Murphy N, Costigan C, Cody D (2013) Requirement for age-specific peak cortisol responses to insulin-induced hypoglycaemia in children. Eur J Endocrinol 169(2):139–145. https://doi.org/10.1530/EJE-13-0084 Kazlauskaite R, Maghnie M (2010) Pitfalls in the diagnosis of central adrenal insufficiency in children. Endocr Dev 17:96–107. https://doi.org/10.1159/000262532 Bonfig W, Bechtold S, Bachmann S, Putzker S, Fuchs O, Pagel P, Schwarz HP (2008) Reassessment of the optimal growth hormone cut-off level in insulin tolerance testing for growth hormone secretion in patients with childhood-onset growth hormone deficiency during transition to adulthood. J Pediatr Endocrinol Metab 21(11):1049–1056 Guzzetti C, Ibba A, Pilia S, Beltrami N, Di Iorgi N, Rollo A, Fratangeli N, Radetti G, Zucchini S, Maghnie M, Cappa M, Loche S (2016) Cut-off limits of the peak GH response to stimulation tests for the diagnosis of GH deficiency in children and adolescents: study in patients with organic GHD. Eur J Endocrinol 175(1):41–47. https://doi.org/10.1530/EJE-16-0105 Secco A, di Iorgi N, Napoli F, Calandra E, Calcagno A, Ghezzi M, Frassinetti C, Fratangeli N, Parodi S, Benassai M, Leitner Y, Gastaldi R, Lorini R, Maghnie M, Radetti G (2009) Reassessment of the growth hormone status in young adults with childhood-onset growth hormone deficiency: reappraisal of insulin tolerance testing. J Clin Endocrinol Metab 94(11):4195–4204. https://doi.org/10.1210/jc.2009-0602 Tuli G, Tessaris D, Einaudi S, Matarazzo P, De Sanctis L (2018) Copeptin role in polyuria-polydipsia syndrome differential diagnosis and reference range in paediatric age. Clin Endocrinol 88(6):873–879. https://doi.org/10.1111/cen.13583 Lewandowski KC, Lewinski A, Skowronska-Jozwiak E, Malicka K, Horzelski W, Brabant G (2017) Copeptin as a marker of an altered CRH axis in pituitary disease. Endocrine 57(3):474–480. https://doi.org/10.1007/s12020-017-1366-6 Barron WM, Schreiber J, Lindheimer MD (1986) Effect of ovarian sex steroids on osmoregulation and vasopressin secretion in the rat. Am J Physiol 250(4 Pt 1):E352–361. https://doi.org/10.1152/ajpendo.1986.250.4.E352 Sar M, Stumpf WE (1980) Simultaneous localization of [3H]estradiol and neurophysin I or arginine vasopressin in hypothalamic neurons demonstrated by a combined technique of dry-mount autoradiography and immunohistochemistry. Neurosci Lett 17(1–2):179–184. https://doi.org/10.1016/0304-3940(80)90081-6 Stachenfeld NS, Splenser AE, Calzone WL, Taylor MP, Keefe DL (2001) Sex differences in osmotic regulation of AVP and renal sodium handling. J Appl Physiol 91(4):1893–1901. https://doi.org/10.1152/jappl.2001.91.4.1893 Lewandowski KC, Lewinski A, Skowronska-Jozwiak E, Stasiak M, Horzelski W, Brabant G (2016) Copeptin under glucagon stimulation. Endocrine 52(2):344–351. https://doi.org/10.1007/s12020-015-0783-7 Reis FM, Ribeiro-de-Oliveira Junior A, Machado LJ, Guerra RM, Reis AM, Coimbra CC (1998) Plasma prolactin and glucose alterations induced by surgical stress: a single or dual response? Exp Physiol 83(1):1–10 Delitala G, Tomasi P, Virdis R (1987) Prolactin, growth hormone and thyrotropin-thyroid hormone secretion during stress states in man. Baillieres Clin Endocrinol Metab 1(2):391–414 May PB, Burrow GN, Kayne RD, Donabedian RK (1978) Hypoglycemia-induced prolactin release. Arch Intern Med 138(6):918–920 Woolf PD, Lee LA, Leebaw W, Thompson D, Lilavivathana U, Brodows R, Campbell R (1977) Intracellular glucopenia causes prolactin release in man. J Clin Endocrinol Metab 45(3):377–383. https://doi.org/10.1210/jcem-45-3-377 Okajima T, Motomatsu T, Kato K, Ibayashi H (1980) Naloxone inhibits prolactin and growth hormone release induced by intracellular glucopenia in the rats. Life Sci 27(9):755–760. https://doi.org/10.1016/0024-3205(80)90329-x Blask DE, Vaughan MK, Champney TH, Johnson LY, Vaughan GM, Becker RA, Reiter RJ (1984) Opioid and dopamine involvement in prolactin release induced by arginine vasotocin and vasopressin in the male rat. Neuroendocrinology 38(1):56–61. https://doi.org/10.1159/000123866 Kjaer A, Knigge U, Jorgensen H, Warberg J (1998) Selective inhibition of magnocellular vasopressin neurons by hypoosmolality: effect on histamine- and stress-induced secretion of adrenocorticotropin and prolactin. Neuroendocrinology 67(5):330–335. https://doi.org/10.1159/000054331 Mai LM, Pan JT (1990) Paradoxical effects of oxytocin and vasopressin on basal prolactin secretion and the estrogen-induced prolactin surge. Life Sci 47(14):1243–1251 Berczi I, Quintanar-Stephano A, Kovacs K (2009) Neuroimmune regulation in immunocompetence, acute illness, and healing. Ann N Y Acad Sci 1153:220–239. https://doi.org/10.1111/j.1749-6632.2008.03975.x Shin SH (1982) Vasopressin has a direct effect on prolactin release in male rats. Neuroendocrinology 34(1):55–58. https://doi.org/10.1159/000123277 Nagy G, Mulchahey JJ, Smyth DG, Neill JD (1988) The glycopeptide moiety of vasopressin-neurophysin precursor is neurohypophysial prolactin releasing factor. Biochem Biophys Res Commun 151(1):524–529 Flores CM, Munoz D, Soto M, Kausel G, Romero A, Figueroa J (2007) Copeptin, derived from isotocin precursor, is a probable prolactin releasing factor in carp. Gen Comp Endocrinol 150(2):343–354. https://doi.org/10.1016/j.ygcen.2006.09.005 Hyde JF, North WG, Ben-Jonathan N (1989) The vasopressin-associated glycopeptide is not a prolactin-releasing factor: studies with lactating Brattleboro rats. Endocrinology 125(1):35–40. https://doi.org/10.1210/endo-125-1-35 Mukherjee A, Murray RD, Columb B, Gleeson HK, Shalet SM (2003) Acquired prolactin deficiency indicates severe hypopituitarism in patients with disease of the hypothalamic-pituitary axis. Clin Endocrinol 59(6):743–748. https://doi.org/10.1046/j.1365-2265.2003.01916.x Chikanza IC, Petrou P, Chrousos G (2000) Perturbations of arginine vasopressin secretion during inflammatory stress. Pathophysiologic implications. Ann N Y Acad Sci 917:825–834 Chikanza IC, Grossman AS (1998) Hypothalamic-pituitary-mediated immunomodulation: arginine vasopressin is a neuroendocrine immune mediator. Br J Rheumatol 37(2):131–136 Drummond JB, Barbosa IG, Dantzer R, Teixeira AL (2018) The effect of insulin-induced hypoglycemia on inflammatory markers: a systematic review. Brain Behav Immun 73:41–50. https://doi.org/10.1016/j.bbi.2018.05.003 Maravic-Stojkovic V, Lausevic-Vuk LJ, Obradovic M, Jovanovic P, Tanaskovic S, Stojkovic B, Isenovic RE, Radak DJ (2014) Copeptin level after carotid endarterectomy and perioperative stroke. Angiology 65(2):122–129. https://doi.org/10.1177/0003319712473637 Masajtis-Zagajewska A, Kurnatowska I, Wajdlich M, Nowicki M (2015) Utility of copeptin and standard inflammatory markers in the diagnostics of upper and lower urinary tract infections. BMC Urol 15:67. https://doi.org/10.1186/s12894-015-0061-2 Herrero-Puente P, Prieto-Garcia B, Garcia-Garcia M, Jacob J, Martin-Sanchez FJ, Pascual-Figal D, Bueno H, Gil V, Llorens P, Vazquez-Alvarez J, Romero-Pareja R, Sanchez-Gonzalez M, Miro O (2017) Predictive capacity of a multimarker strategy to determine short-term mortality in patients attending a hospital emergency Department for acute heart failure BIO-EAHFE study. Clin Chim Acta 466:22–30. https://doi.org/10.1016/j.cca.2017.01.003