Cooperativity, Local-Nonlocal Coupling, and Nonnative Interactions: Principles of Protein Folding from Coarse-Grained Models

Annual Review of Physical Chemistry - Tập 62 Số 1 - Trang 301-326 - 2011
Hue Sun Chan1, Zhuqing Zhang1, Stefan Wallin2, Zhirong Liu3
1Departments of Biochemistry, of Molecular Genetics, and of Physics, University of Toronto, Toronto, Ontario M5S 1A8, Canada;, [email protected]
2Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, SE-223 62 Lund, Sweden;
3College of Chemistry and Molecular Engineering, Center for Theoretical Biology, and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China;

Tóm tắt

Coarse-grained, self-contained polymer models are powerful tools in the study of protein folding. They are also essential to assess predictions from less rigorous theoretical approaches that lack an explicit-chain representation. Here we review advances in coarse-grained modeling of cooperative protein folding, noting in particular that the Levinthal paradox was raised in response to the experimental discovery of two-state-like folding in the late 1960s, rather than to the problem of conformational search per se. Comparisons between theory and experiment indicate a prominent role of desolvation barriers in cooperative folding, which likely emerges generally from a coupling between local conformational preferences and nonlocal packing interactions. Many of these principles have been elucidated by native-centric models, wherein nonnative interactions may be treated perturbatively. We discuss these developments as well as recent applications of coarse-grained chain modeling to knotted proteins and to intrinsically disordered proteins.

Từ khóa


Tài liệu tham khảo

10.1038/181662a0

Tompa P. 2010. Structure and Function of Intrinsically Disordered Proteins. Boca Raton, FL: Chapman & Hall. 359 pp.

10.1016/j.bbapap.2010.01.017

10.1111/j.1399-3011.1975.tb02465.x

10.1038/253694a0

10.1021/bi00327a032

10.1073/pnas.84.21.7524

10.1146/annurev.bb.20.060191.002311

10.1002/prot.340210302

10.1002/pro.5560040401

10.1016/S0076-6879(04)80016-8

10.1016/j.sbi.2004.01.009

10.1021/cr040425u

10.1016/j.sbi.2007.10.005

10.1146/annurev.biophys.37.092707.153558

10.1016/S0079-6603(08)00406-6

10.3390/ijms10030889

10.1002/iub.223

10.1146/annurev-biophys-051309-103835

10.1038/nsmb.1592

10.1016/j.jmb.2006.03.034

10.1038/nmeth.1336

10.1016/j.sbi.2007.12.003

10.1038/nature09021

10.1038/nature01160

10.1146/annurev.biophys.34.040204.144447

10.1063/1.2995987

10.1073/pnas.0804775105

10.1016/j.bpj.2009.08.012

10.1073/pnas.0905466106

10.1021/ja9090353

10.1063/1.3435332

10.1002/prot.22589

10.1126/science.321.5890.784

10.1038/35011000

10.1088/1478-3975/6/1/015001

10.1073/pnas.97.1.32

Barber MN, Ninham BW. 1970. Random and Restricted Walks: Theory and Applications. New York: Gordon & Breach. 176 pp.

10.1073/pnas.83.19.7267

10.1021/ma00200a030

10.1063/1.458605

10.1073/pnas.87.9.3526

10.1002/1097-0134(20000901)40:4<543::AID-PROT20>3.0.CO;2-O

Chan HS, 2002, Current Topics in Computational Molecular Biology, 403

10.1110/ps.0220003

10.1110/ps.041317705

10.1073/pnas.0802986106

10.1002/bip.1966.360040808

10.1002/1097-0134(20000901)40:4<637::AID-PROT80>3.0.CO;2-4

10.1002/bies.950160312

10.1051/jcp/1968650044

10.1073/pnas.89.18.8721

10.1038/nsb0197-10

10.1002/prot.10506

10.1073/pnas.89.1.20

10.1021/bi00439a019

10.1063/1.473355

10.1016/j.jmb.2008.09.023

10.1073/pnas.89.11.4918

10.1146/annurev.physchem.48.1.545

10.1126/science.7886447

10.1063/1.466677

10.1088/1478-3975/2/4/S01

10.1006/jmbi.1998.1645

10.1038/33808

10.1103/PhysRevLett.82.3372

10.1006/jmbi.2000.3693

10.1146/annurev.physchem.52.1.499

10.1006/jmbi.2001.5037

10.1016/S0022-2836(02)01434-1

10.1021/ja049510+

10.1088/0953-8984/18/14/S14

10.1073/pnas.94.20.10636

10.1021/bi971786p

10.1073/pnas.96.12.6587

10.1006/jmbi.1999.2941

10.1006/jmbi.2000.4234

10.1073/pnas.0305376101

10.1021/jp049652q

10.1073/pnas.0402659101

10.1016/j.abb.2008.02.042

10.1016/S0022-2836(02)01356-6

10.1002/prot.10478

10.1073/pnas.0403486101

10.1016/j.sbi.2009.12.013

10.1063/1.435308

10.1146/annurev.biophys.35.040405.102134

10.1016/j.bpc.2010.02.004

10.1073/pnas.022387699

10.1016/j.str.2007.05.004

10.1073/pnas.0307851100

10.1016/j.jmb.2009.04.011

10.1110/ps.036319.108

10.1063/1.2186317

10.1103/PhysRevLett.85.4823

10.1016/S0968-0004(98)01346-2

10.1021/bi00483a001

10.1016/0022-2836(91)90505-Z

10.1021/cr040423+

10.1073/pnas.0403386101

10.1126/science.7618079

10.1002/prot.20286

10.1021/ja808136x

10.1110/ps.03403604

10.1073/pnas.94.12.6170

10.1016/S0065-3233(00)53004-6

10.1002/bip.360231122

10.1021/bi00107a011

10.1073/pnas.92.19.8926

10.1016/j.bbrc.2005.12.093

10.1016/j.jmb.2005.03.084

10.1021/ja040165y

10.1073/pnas.0605859104

10.1146/annurev.biophys.32.110601.141709

10.1021/ja073576y

10.1126/science.1089427

10.1016/j.bpj.2008.11.004

10.1002/prot.21066

10.1063/1.2780154

10.1016/j.sbi.2007.01.003

10.1073/pnas.0801874105

10.1016/j.jmb.2009.08.010

10.1073/pnas.0911844107

10.1016/S0022-2836(03)00028-7

10.1016/j.jmb.2005.08.031

10.1016/j.cbpa.2007.10.002

10.1088/1478-3975/7/1/016009

10.1073/pnas.0805468105

10.1371/journal.pcbi.0020122

10.1073/pnas.0912161107

10.1016/j.jmb.2007.02.035

10.1073/pnas.0811147106

10.1371/journal.pcbi.1000731

10.1016/j.jmb.2006.11.014

10.1111/j.1742-4658.2009.06990.x

10.1016/j.sbi.2007.01.009

10.1073/pnas.93.21.11504

10.1073/pnas.160259697

10.1103/PhysRevLett.96.168101

10.1073/pnas.0700329104

10.1073/pnas.0702580104

10.1073/pnas.0914727107

10.1371/journal.pcbi.1000241

10.1021/ja802124e

10.1073/pnas.0911107107

10.1016/j.jmb.2004.12.021

10.1371/journal.pcbi.0020078

10.1371/journal.pcbi.1000060

10.1016/j.jmb.2009.09.010

10.1002/prot.22820

10.2976/1.2739116