Cooperative insertion of CO2 in diamine-appended metal-organic frameworks

Nature - Tập 519 Số 7543 - Trang 303-308 - 2015
Thomas M. MacDonald1, Jarad A. Mason1, Xueqian Kong2, Eric D. Bloch1, David Gygi1, Alessandro Dani3, Valentina Crocellà3, Filippo Giordanino3, Samuel O. Odoh4, Walter S. Drisdell5, Bess Vlaisavljevich2, Allison L. Dzubak4, Roberta Poloni6, Sondre K. Schnell2, Nora Planas4, Kyuho Lee2, Tod A. Pascal7, Liwen F. Wan7, David Prendergast7, Jeffrey B. Neaton7, Berend Smit5, Jeffrey B. Kortright5, Laura Gagliardi4, Silvia Bordiga3, Jeffrey A. Reimer5, Jeffrey R. Long5
1Department of Chemistry, University of California, Berkeley, California 94720, USA
2Department of Chemical and Biological Engineering, University of California, Berkeley, California 94720, USA,
3Chemistry Department, NIS and INSTM Centre of Reference, University of Turin, Via Quarello 15, I-10135 Torino, Italy,
4Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA,
5Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA,
6Université Grenoble Alpes, Science et Ingénierie des Matériaux et Procédés (SIMAP), F-38000 Grenoble, France,
7Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA,

Tóm tắt

Từ khóa


Tài liệu tham khảo

International Energy Agency. CO 2 Emissions from Fuel Combustion: Highlights < http://www.iea.org/publications/freepublications/publication/CO2EmissionsFromFuelCombustionHighlights2013.pdf > (IEA, 2013)

IPCC. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 11–14 (Cambridge Univ. Press, 2013)

Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005)

Haszeldine, R. S. Carbon capture and storage: how green can black be? Science 325, 1647–1652 (2009)

Boot-Handford, M. E. et al. Carbon capture and storage update. Energy Environ. Sci. 7, 130–189 (2014)

Choi, S., Drese, J. H. & Jones, C. W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2, 796–854 (2009)

Lin, L. C. et al. In silico screening of carbon-capture materials. Nature Mater. 11, 633–641 (2012)

Sumida, K. et al. Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724–781 (2012)

Zhou, H. C., Long, J. R. & Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 112, 673–674 (2012)

Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 123044 (2013)

Demessence, A., D’Alessandro, D. M., Foo, M. L. & Long, J. R. Strong CO2 binding in a water stable triazolate-bridged metal-organic framework functionalized with ethylenediamine. J. Am. Chem. Soc. 131, 8784–8786 (2009)

McDonald, T. M., D’Alessandro, D. M., Krishna, R. & Long, J. R. Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal-organic framework CuBTTri. Chem. Sci. 2, 2022–2028 (2011)

McDonald, T. M. et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056–7065 (2012)

Hong, C. S. et al. Diamine-functionalized metal-organic framework: exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism. Energy Environ. Sci. 7, 744–751 (2014)

Rosi, N. L. et al. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 127, 1504–1518 (2005)

Dietzel, P. D. C., Panella, B., Hirscher, M., Blom, R. & Fjellvåg, H. Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem. Commun. 959–961 (2006)

Caskey, S. R., Wong-Foy, A. G. & Matzger, A. J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130, 10870–10871 (2008)

Mason, J. A. et al. Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci 4, 3030–3040 (2011)

Coelho, A. A. Whole-profile structure solution from powder diffraction powder using simulated annealing. J. Appl. Crystallogr. 33, 899–908 (2000)

Planas, N. et al. The mechanism of carbon dioxide adsorption in an alkylamine-functionalized metal-organic framework. J. Am. Chem. Soc. 135, 7402–7405 (2013)

Tiritiris, I. & Kantlehner, W. Orthoamide und Iminiumsalze, LXX [1]. Zur Fixierung von Kohlendioxid mit organischen Basen (Teil 1): Reaktionen von Diaminen mit Kohlendioxid. Z. Naturforsch. 66b, 164–176 (2011)

Drisdell, W. S. et al. Probing adsorption interactions in metal-organic frameworks using X-ray spectroscopy. J. Am. Chem. Soc. 135, 18183–18190 (2013)

Weiss, J. N. The Hill equation revisited: uses and misuses. FASEB J. 11, 835–841 (1997)

Irving, H. & Williams, R. J. P. The stability of transition-metal complexes. J. Chem. Soc. 637, 3192–3210 (1953)

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

Walton, K. S. et al. Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks. J. Am. Chem. Soc. 130, 406–407 (2008)

Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nature Chem. 1, 695–704 (2009)

Serre, C. et al. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C–C6H4–CO2}·{HO2C–C6H4–CO2H}x·{H2O}y . J. Am. Chem. Soc. 124, 13519–13526 (2002)

Henke, S. et al. Multiple phase-transitions upon selective CO2 adsorption in an alkyl ether functionalized metal-organic framework—an in situ X-ray diffraction study. CrystEngComm 13, 6399–6404 (2011)

Seo, J., Matsuda, R., Sakamoto, H., Bonneau, C. & Kitagawa, S. A pillared-layer coordination polymer with a rotable pillar acting as a molecular gate for guest molecules. J. Am. Chem. Soc. 131, 12792–12800 (2009)

Thomy, A. & Duval, X. Stepwise isotherms and phase transitions in physisorbed films. Surf. Sci. 299–300, 415–425 (1994)

Jessop, P. G., Mercer, S. M. & Heldebrant, D. J. CO2-triggered switchable solvents, surfactants, and other materials. Energy Environ. Sci. 5, 7240–7253 (2012)

Liebenthal, U. et al. Overall process analysis and optimisation for CO2 capture from coal fired power plants based on phase change solvents forming two liquid phases. Energy Procedia 37, 1844–1854 (2013)

Ma’mun, S. & Kim, I. Selection and characterization of phase-change solvent for carbon dioxide capture: precipitating system. Energy Procedia 37, 331–339 (2013)

Choi, S., Watanabe, T., Bae, T.-H., Sholl, D. S. & Jones, C. W. Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases. J. Phys. Chem. Lett. 3, 1136–1141 (2012)

Rochelle, G. et al. Aqueous piperazine as the new standard for CO2 capture technology. Chem. Eng. J. 171, 725–733 (2011)

Sayari, A. & Blemabkhout, Y. Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. J. Am. Chem. Soc. 132, 6312–6314 (2010)

Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013)

van Lare, C. E. J. Mass Transfer in Gas Fluidized Beds: Scaling, Modeling, and Particle Size Influence 141–142. PhD thesis, Tech. Univ. Eindhoven (1991) < http://alexandria.tue.nl/repository/books/348157.pdf >

Lorimer, G. The carboxylation and oxygenation of ribulose 1,5–bisphosphate: the primary events in photosynthesis and photorespiration. Annu. Rev. Plant Physiol. 32, 349–382 (1981)

Taylor, T. C. & Andersson, I. Structural transitions during activation and ligand binding in hexadecameric Rubisco inferred from the crystal structure of activated unliganded spinach enzyme. Nature Struct. Biol. 3, 95–101 (1996)

Assche, F. & Clijsters, H. Effects of metals on enzyme activity in plants. Plant Cell Environ. 13, 195–206 (1990)

Coelho, A. A. Indexing of powder diffraction patterns by iterative use of singular value decomposition. J. Appl. Crystallogr. 36, 86–95 (2003)

Coelho, A. A. TOPAS-Academic, Version 4.1 (Coelho Software, 2007)

Stephens, P. W. Phenomenological model of anisotropic peak broadening in power diffraction. J. Appl. Crystallogr. 32, 281–289 (1999)

Drisdell, W. S. & Kortright, J. B. Gas cell for in situ soft X-ray transmission-absorption spectroscopy of materials. Rev. Sci. Instrum. 85, 074103 (2014)

Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Clarendon Press, 1987)

Parrinello, M. & Rahman, A. Crystal structure and pair potentials: a molecular-dynamics study. Phys. Rev. Lett. 45, 1196–1199 (1980)

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17978 (1994)

Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

Kresse, G. & Hafner, J. Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B 47, 558–561 (1993)

Lee, K., Murray, E. D., Kong, L., Lundqvist, B. I. & Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101 (2010)

Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990)

Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009)

Shirley, E. L. Optimal basis sets for detailed Brillouin-zone integrations. Phys. Rev. B 54, 16464–16469 (1996)

Prendergast, D. & Louie, S. G. Bloch-state-based interpolation: an efficient generalization of the Shirley approach to interpolating electronic structure. Phys. Rev. B 80, 235126 (2009)

Taillefumier, M., Cabaret, D., Flank, A.-M. & Mauri, F. X-ray absorption near-edge structure calculations with the pseudopotentials: application to the K edge in diamond and α-quartz. Phys. Rev. B 66, 195107 (2002)

Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

Zhao, Y. & Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125, 194101 (2006)

Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: orbital ordering in Mott–Hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995)

Wang, L., Maxisch, T. & Ceder, G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73, 195107 (2006)