Convex functionals and generalized harmonic maps into spaces of non positive curvature

Commentarii Mathematici Helvetici - Tập 70 Số 1 - Trang 659-673 - 1995
Jürgen Jost1
1Fakultät und Institut für Mathematik, Ruhr-Universität Bochum, D-44780, Bochum

Tóm tắt

Từ khóa


Tài liệu tham khảo

[A1]Al'ber, S. I.,On n-dimensional problems in the calculus of variations in the large, Sov. Math. Dokl.5 (1964), 700–804.

[A2]Al'ber, S. I.,Spaces of mappings into a manifold with negative curvature, Sov. Math. Dokl.9 (1967), 6–9.

[At]Attouch, H.,Variational convergence for functions and operators, Pitman, 1984.

[C1]Corlette, K.,Flat G-Bundles with canonical metrics, J. Diff. Geom.28 (1988), 361–382.

[C2]Corlette, K.,Archimedean superrigidity and hyperbolic geometry, Ann. Math.135 (1992), 165–182.

[D]Donaldson, S.,Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc.55 (1987), 127–131.

[dM]dal Maso, G.,An introduction to Γ-convergence, Birkhäuser, 1993.

[DO]Diederich, K. andOhsawa, T.,Harmonic mappings and disk bundles over compact Kähler manifolds, Publ. Res. Inst. Math. Sci.21 (1985), 819–833.

[ES]Eells, J. andSampson, J.,Harmonic mappings of Riemannian manifolds, Am. J. Math.85 (1964), 109–160.

[GS]Gromov, M. andSchoen, R.,Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Publ. Math. IHES76 (1992), 165–246.

[H]Hartman, P.,On homotopic harmonic maps, Can. J. Math.19 (1967), 673–687.

[J]Jost, J.,Equilibrium maps between metric spaces, Calc. Var.2 (1994), 173–204.

[JY1]Jost, J. andYau, S. T.,The strong rigidity of locally symmetric complex manifolds of rank one and finite volume, Math. Ann.271 (1985), 143–152.

[JY2]Jost, J. andYau, S. T.,On the rigidity of certain discrete groups and algebraic varieties, Math. Ann.278, (1987) 481–496.

[JY3]Jost, J. andYau, S. T.,Harmonic maps and group representations, in: B. Lawson and K. Tenenblat (eds.),Differential Geometry and Minimal Submanifolds, Longman Scientific, 1991, pp. 241–260.

[JY4]Jost, J. andYau, S. T.,Harmonic maps and superrigidity, Proc. Sym. Pure Math.54, Part I (1993), 245–280.

[JZ1]Jost, J. andZuo, K., Harmonic maps andSl(r,ℂ)-representations ofπ 1 of quasi projective manifolds, J. Alg. Geom., to appear.

[JZ2]Jost, J. andZuo, K., Harmonic maps into Tits buildings and factorization of non rigid and non arithmetic representations ofπ 1 of algebraic varieties.

[KS]Korevaar, N. andSchoen, R.,Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom.1 (1993), 561–569.

[K]Kourouma, M.,Harmonic sections of Riemannian fiber bundles.

[La]Labourie, F.,Existence d'applications harmoniques tordues à valeurs dans les variétés à courbure négative, Proc. AMS111 (1991), 877–882.

[N]Nikolaev, I.,Synthetic methods in Riemannian geometry, Lecture Notes.

[Re]Reshetnyak, Y. G.,Nonexpanding maps in a space of curvature no greater than K, Siberian Math. Journ.9 (1968), 683–689.