Convex bodies and multiplicities of ideals
Tóm tắt
Từ khóa
Tài liệu tham khảo
V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps (Birkhäuser, New York, 2012), Vol. 1, Modern Birkhäuser Classics.
Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities (Springer, Berlin, 1988), Grundl. Math. Wiss. 285.
S. D. Cutkosky, “Multiplicities associated to graded families of ideals,” Algebra Number Theory 7(9), 2059–2083 (2013); arXiv: 1206.4077 [math.AC].
S. D. Cutkosky, “Multiplicities of graded families of linear series and ideals,” arXiv: 1301.5613 [math.AG].
S. D. Cutkosky, “Asymptotic multiplicities,” arXiv: 1311.1432 [math.AC].
T. de Fernex, L. Ein, and M. Mustaţă, “Multiplicities and log canonical threshold,” J. Algebr. Geom. 13(3), 603–615 (2004).
F. Fillastre, “Fuchsian convex bodies: Basics of Brunn-Minkowski theory,” Geom. Funct. Anal. 23(1), 295–333 (2013).
M. Fulger, “Local volumes on normal algebraic varieties,” arXiv: 1105.2981 [math.AG].
K. Kaveh and A. G. Khovanskii, “Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory,” Ann. Math., Ser. 2, 176(2), 925–978 (2012).
K. Kaveh and A. G. Khovanskii, “On mixed multiplicities of ideals,” arXiv: 1310.7979 [math.AG].
A. G. Khovanskii, “Algebra and mixed volumes,” in Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities (Springer, Berlin, 1988), Ch. 4, Addendum 3, Grundl. Math. Wiss. 285, pp. 182–207.
A. G. Khovanskii, “Newton polyhedron, Hilbert polynomial, and sums of finite sets,” Funkts. Anal. Prilozh. 26(4), 57–63 (1992) [Funct. Anal. Appl. 26, 276–281 (1992)].
A. Khovanskii and V. Timorin, “Alexandrov-Fenchel inequality for coconvex bodies,” arXiv: 1305.4484 [math.MG].
A. Khovanskii and V. Timorin, “On the theory of coconvex bodies,” arXiv: 1308.1781 [math.MG].
R. Lazarsfeld and M. Mustaţă, “Convex bodies associated to linear series,” Ann. Sci. Éc. Norm. Super., Ser. 4, 42(5), 783–835 (2009).
A. Okounkov, “Why would multiplicities be log-concave?,” in The Orbit Method in Geometry and Physics, Marseille, 2000 (Birkhäuser, Boston, MA, 2003), Prog. Math. 213, pp. 329–347.
D. Rees and R. Y. Sharp, “On a theorem of B. Teissier on multiplicities of ideals in local rings,” J. London Math. Soc., Ser. 2, 18(3), 449–463 (1978).
B. Teissier, “Sur une inégalité à la Minkowski pour les multiplicités,” Ann. Math., Ser. 2,106 (1), 38–44 (1977).
B. Teissier, “Jacobian Newton polyhedra and equisingularity,” arXiv: 1203.5595 [math.AG].
O. Zariski and P. Samuel, Commutative Algebra (Springer, New York, 1976), Vol. 2, Grad. Texts Math. 29.