Convex bodies and multiplicities of ideals

Kiumars Kaveh1, Askold Khovanskiĭ2,3,4
1Department of Mathematics, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, USA
2Institute for Systems Analysis, Russian Academy of Sciences, Moscow, Russia
3Department of Mathematics, University of Toronto, Toronto, Canada
4Independent University of Moscow, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps (Birkhäuser, New York, 2012), Vol. 1, Modern Birkhäuser Classics.

Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities (Springer, Berlin, 1988), Grundl. Math. Wiss. 285.

S. D. Cutkosky, “Multiplicities associated to graded families of ideals,” Algebra Number Theory 7(9), 2059–2083 (2013); arXiv: 1206.4077 [math.AC].

S. D. Cutkosky, “Multiplicities of graded families of linear series and ideals,” arXiv: 1301.5613 [math.AG].

S. D. Cutkosky, “Asymptotic multiplicities,” arXiv: 1311.1432 [math.AC].

T. de Fernex, L. Ein, and M. Mustaţă, “Multiplicities and log canonical threshold,” J. Algebr. Geom. 13(3), 603–615 (2004).

F. Fillastre, “Fuchsian convex bodies: Basics of Brunn-Minkowski theory,” Geom. Funct. Anal. 23(1), 295–333 (2013).

M. Fulger, “Local volumes on normal algebraic varieties,” arXiv: 1105.2981 [math.AG].

R. Hübl, “Completions of local morphisms and valuations,” Math. Z. 236(1), 201–214 (2001).

K. Kaveh and A. G. Khovanskii, “Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory,” Ann. Math., Ser. 2, 176(2), 925–978 (2012).

K. Kaveh and A. G. Khovanskii, “On mixed multiplicities of ideals,” arXiv: 1310.7979 [math.AG].

A. G. Khovanskii, “Algebra and mixed volumes,” in Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities (Springer, Berlin, 1988), Ch. 4, Addendum 3, Grundl. Math. Wiss. 285, pp. 182–207.

A. G. Khovanskii, “Newton polyhedron, Hilbert polynomial, and sums of finite sets,” Funkts. Anal. Prilozh. 26(4), 57–63 (1992) [Funct. Anal. Appl. 26, 276–281 (1992)].

A. Khovanskii and V. Timorin, “Alexandrov-Fenchel inequality for coconvex bodies,” arXiv: 1305.4484 [math.MG].

A. Khovanskii and V. Timorin, “On the theory of coconvex bodies,” arXiv: 1308.1781 [math.MG].

A. G. Kouchnirenko, “Polyèdres de Newton et nombres de Milnor,” Invent. Math. 32(1), 1–31 (1976).

R. Lazarsfeld and M. Mustaţă, “Convex bodies associated to linear series,” Ann. Sci. Éc. Norm. Super., Ser. 4, 42(5), 783–835 (2009).

C. Lech, “Inequalities related to certain couples of local rings,” Acta Math. 112, 69–89 (1964).

M. Mustaţă, “On multiplicities of graded sequences of ideals,” J. Algebra 256(1), 229–249 (2002).

A. Okounkov, “Brunn-Minkowski inequality for multiplicities,” Invent. Math. 125(3), 405–411 (1996).

A. Okounkov, “Why would multiplicities be log-concave?,” in The Orbit Method in Geometry and Physics, Marseille, 2000 (Birkhäuser, Boston, MA, 2003), Prog. Math. 213, pp. 329–347.

D. Rees and R. Y. Sharp, “On a theorem of B. Teissier on multiplicities of ideals in local rings,” J. London Math. Soc., Ser. 2, 18(3), 449–463 (1978).

B. Teissier, “Sur une inégalité à la Minkowski pour les multiplicités,” Ann. Math., Ser. 2,106 (1), 38–44 (1977).

B. Teissier, “Jacobian Newton polyhedra and equisingularity,” arXiv: 1203.5595 [math.AG].

O. Zariski and P. Samuel, Commutative Algebra (Springer, New York, 1976), Vol. 2, Grad. Texts Math. 29.