Conversion of residual lithium into fast lithium ion conductor coating to achieve high cycle life LiNi0.8Co0.15Al0.05O2 cathode for lithium ion battery

Guangyu Chen1, Hao Yang1, Lihao Liu1, Zheng Shu1, Tiantang Yu1, Meng Wang2, Lian Wang2, Xiongxiong Hu1
1College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
2Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2014). https://doi.org/10.1038/nchem.2085

W. Li, E.M. Erickson, A. Manthiram, High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy. 5, 26–34 (2020). https://doi.org/10.1038/s41560-019-0513-0

Y. Huang, The discovery of cathode materials for lithium-ion batteries from the view of interdisciplinarity. Interdisciplinary Mater. 1, 323–329 (2022). https://doi.org/10.1002/idm2.12048

M.V. Reddy, G.V.S. Rao, B.V.R. Chowdari, Preparation and characterization of LiNi0.5Co0.5O2 and LiNi0.5Co0.4Al0.1O2 by molten salt synthesis for Li ion batteries. J. Phys. Chem. C 111, 11712–11720 (2007). https://doi.org/10.1021/jp0676890

S. Hu, J. Wang, Y. Lu et al., An epitaxial coating with preferred orientation stabilizing high-energy Ni-Rich NCA cathodes. Appl. Surf. Sci. (2022). https://doi.org/10.1016/j.apsusc.2021.152183

S.-H. Lee, C.S. Yoon, K. Amine et al., Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating. J. Power Sources. 234, 201–207 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.045

J. Yan, H. Hao, J. Tong et al., Recent progress on the modification of high nickel content NCM: coating, doping, and single crystallization. Interdisciplinary Mater. 1, 330–353 (2022). https://doi.org/10.1002/idm2.12043

Y. Kim, H. Park, J.H. Warner et al., Unraveling the intricacies of residual lithium in high-Ni cathodes for lithium-ion batteries. ACS Energy Letters 6, 941–948 (2021). https://doi.org/10.1021/acsenergylett.1c00086

W. Yang, W. Xiang, Y.-X. Chen et al., Interfacial regulation of Ni-Rich cathode materials with an ion-conductive and pillaring layer by infusing gradient boron for improved cycle stability. ACS Appl. Mater. Interfaces 12, 10240–10251 (2020). https://doi.org/10.1021/acsami.9b18542

W.-G. Ryu, H.-S. Shin, M.-S. Park et al., Mitigating storage-induced degradation of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by surface tuning with phosphate. Ceram. Int. 45, 13942–13950 (2019). https://doi.org/10.1016/j.ceramint.2019.04.092

Y.-Y. Wang, Y.-Y. Sun, S. Liu et al., Na-doped LiNi0.8Co0.15Al0.05O2 with excellent stability of both capacity and potential as cathode materials for Li-Ion batteries. ACS Appl. Energy Mater. 1, 3881–3889 (2018). https://doi.org/10.1021/acsaem.8b00630

Z. Hao, X. Xu, S. Deng et al., In situ growth of Co3O4 coating layer derived from MOFs on LiNi0.8Co0.15Al0.05O2 cathode materials. Ionics. 25, 2469–2476 (2018). https://doi.org/10.1007/s11581-018-2726-9

S. Xia, F. Li, F. Chen et al., Preparation of FePO4 by liquid-phase method and modification on the surface of LiNi0.80Co0.15Al0.05O2 cathode material. J. Alloys Compd. 731, 428–436 (2018). https://doi.org/10.1016/j.jallcom.2017.10.047

H. Li, X. Liu, T. Zhai et al., Li3VO4: a promising insertion anode material for lithium-ion batteries. Adv. Energy Mater. 3, 428–432 (2012). https://doi.org/10.1002/aenm.201200833

Y. Huang, J. Feng-Min et al., Improved cycle stability and high-rate capability of Li3VO4-coated Li[Ni0.5Co0.2Mn0.3]O2 cathode material under different voltages. J. Power Sources. 256, 1–7 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.003

Z. Wang, Z. Wang, H. Guo et al., Improving the cycling stability of LiCoO2 at 4.5V through co-modification by mg doping and zirconium oxyfluoride coating. Ceram. Int. 41, 469–474 (2015). https://doi.org/10.1016/j.ceramint.2014.08.093

D.-C. Li, T. Muta, L.-Q. Zhang et al., Effect of synthesis method on the electrochemical performance of LiNi1/3Mn1/3Co1/3O2. J. Power Sources. 132, 150–155 (2004). https://doi.org/10.1016/j.jpowsour.2004.01.016

X. Lu, X. Li, Z. Wang et al., A modified co-precipitation process to coat LiNi1/3Co1/3Mn1/3O2 onto LiNi0.8Co0.1Mn0.1O2 for improving the electrochemical performance. Appl. Surf. Sci. 297, 182–187 (2014). https://doi.org/10.1016/j.apsusc.2014.01.121

K. Kleiner, D. Dixon, P. Jakes et al., Fatigue of LiNi0.8Co0.15Al0.05O2 in commercial Li ion batteries. J. Power Sources. 273, 70–82 (2015). https://doi.org/10.1016/j.jpowsour.2014.08.133

Z. Wang, H. Zhong, G. Song, Enhancing high-voltage performance of LiNi0.8Co0.1Mn0.1O2 by coating with NASICON fast ionic conductor Li1.5Al0.5Zr1.5(PO4)3. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.156467

P. He, M. Zhang, J. Wu et al., Enhanced cyclic stability and discharge capacity of NCM811 cathode by coating ferroelectric-type LiNbO3 ionically conductive layer. J. Alloys Compd. (2023). https://doi.org/10.1016/j.jallcom.2023.171822

X. Zheng, X. Li, Z. Wang et al., Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery. Electrochim. Acta. 191, 32–840 (2016). https://doi.org/10.1016/j.electacta.2016.01.142

H. Yu, Y. Li, Y. Hu et al., 110th anniversary: concurrently coating and doping high-valence vanadium in nickel-rich lithiated oxides for high-rate and stable lithium-ion batteries. Ind. Eng. Chem. Res. 58, 108–4115 (2019). https://doi.org/10.1021/acs.iecr.8b06162

X. Jiang, Y. Wei, X. Yu et al., CeVO4-coated LiNi0.6Co0.2Mn0.2O2 as positive material: towards the excellent electrochemical performance at normal and high temperature. J. Mater. Sci.: Mater. Electron. 29, 5869–15877 (2018). https://doi.org/10.1007/s10854-018-9673-0

H. Zhang, X. Wang, A. Naveed et al., Comparison of structural and electrochemical properties of LiNi0.8Co0.15Al0.05O2 with Li site doping by different cations. Appl. Surf. Sci. (2022). https://doi.org/10.1016/j.apsusc.2022.153933

X. Li, Z. Xie, W. Liu et al., Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2. Electrochim. Acta. 174, 122–1130 (2015). https://doi.org/10.1016/j.electacta.2015.06.099

M. Chen, Z. Zhang, S. Savilov et al., Enhanced structurally stable cathodes by surface and grain boundary tailoring of Ni-Rich material with molybdenum trioxide. J. Power Sources (2020). https://doi.org/10.1016/j.jpowsour.2020.229051

J.-. Zheng, Z. Yang, Z.-. He et al., In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries. Nano Energy. 53, 613–621 (2018). https://doi.org/10.1016/j.nanoen.2018.09.014

H. Qi, K. Liang, W. Guo et al., Facile fabrication and low-cost coating of LiNi0.8Co0.15Al0.05O2 with enhanced electrochemical performance as cathode materials for lithium-ion batteries. Int. J. Electrochem. Sci. 12, 5836–5844 (2017). https://doi.org/10.20964/2017.07.01

M. Seenivasan, C.C. Yang, S.- Wu et al., Improving structural and thermal stability of LiNi0.8Co0.15Al0.05O2 by a fast-ionic-conductive LiAlSiO4 surface coating for Li-ion batteries. Electrochim. Acta (2021). https://doi.org/10.1016/j.electacta.2021.138620

H. Yan, X. Gao, X. Yue et al., Cycling stability of LiNi0.80Co0.15Al0.05O2 cathode modified by solid-state electrolyte film. Appl. Surf. Sci. (2023). https://doi.org/10.1016/j.apsusc.2023.157868

S.N. Lim, W. Ahn, S.-H. Yeon et al., Enhanced elevated-temperature performance of Li(Ni0.8Co0.15Al0.05)O2 electrodes coated with Li2O-2B2O3 glass. Electrochim. Acta. 136, 1–9 (2014). https://doi.org/10.1016/j.electacta.2014.05.056

H. Zhang, X. Zhang, T. Zeng et al., Conversion of residual lithium into fast ionic conductor coating to achieve one-step double modification strategy in LiNi0.8Co0.15Al0.05O2. J. Alloys Compd. (2023). https://doi.org/10.1016/j.jallcom.2022.167638

X. Yang, Y. Tang, G. Shang et al., Enhanced cyclability and high-rate capability of LiNi0.88Co0.095Mn0.025O2 cathodes by homogeneous Al3+ doping. ACS Appl. Mater. Interfaces. 11, 32015–32024 (2019). https://doi.org/10.1021/acsami.9b10558

F. Wu, Q. Li, L. Chen et al., Use of ce to reinforce the interface of Ni-Rich LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium‐ion batteries under high operating voltage. ChemSusChem 12, 935–943 (2019). https://doi.org/10.1002/cssc.201802304

Y. Hou, Y. Ren, T. Shi et al., The surface Al2O3 coating and bulk Zr doping drastically improve the voltage fade and cycling stability of Li(Ni0.8Mn0.1Co0.1)O2 cathode materials. J. Alloys Compd. (2023). https://doi.org/10.1016/j.jallcom.2023.168778

T.-F. Yi, B. Chen, Y.-R. Zhu et al., Enhanced rate performance of molybdenum-doped spinel LiNi0.5Mn1.5O4 cathode materials for lithium ion battery. J. Power Sources. 247, 778–785 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.031

Z. Zhou, Z. Luo, Z. He et al., Suppress voltage decay of lithium-rich materials by coating layers with different crystalline states. J. Energy Chem. 60, 591–598 (2021). https://doi.org/10.1016/j.jechem.2021.01.020