Conversion of glycerol to dihydroxyacetone over Au catalysts on various supports

Journal of Chemical Technology and Biotechnology - Tập 95 Số 4 - Trang 1153-1162 - 2020
Yihu Ke1,2, Xiaohua Li1, Jifan Li1, Chun‐Ling Liu1, Chunli Xu1, Wen‐Sheng Dong1
1Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, China
2School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, China

Tóm tắt

AbstractBACKGROUNDGlycerol, which is a coproduct of biodiesel production, has been identified as a key platform compound for producing various valuable chemicals. The selective catalytic oxidation of glycerol to dihydroxyacetone is very attractive.RESULTSA series of Au catalysts supported on metallic oxides, i.e. ZnO, CuO, Al2O3, Fe2O3 and NiO, were studied for selective catalytic oxidation of glycerol to dihydroxyacetone under base‐free conditions. Among the catalysts, Au/CuO showed the best catalytic activity (glycerol conversion of 89% and dihydroxyacetone selectivity of 82.6% at 80 °C under 10 bar of O2), followed by Au/ZnO ≫ Au/NiO > Au/Al2O3 ≈ Au/CuO‐SD ≈ Au/Fe2O3. The catalytic behaviors of these supported Au catalysts varied depending on the Au particle size, Au oxidation state, Au–support interactions and lattice oxygen reducibility.CONCLUSIONThe main reasons for the high catalytic activity of Au/CuO are as follows. Firstly, the catalyst has small metallic Au particles, which are more active in cleavage of the secondary CH bond in glycerol molecules. Secondly, the interactions between Au and CuO facilitate lattice oxygen reduction, and this increases oxygen mobility, which may promote regeneration of Au–support perimeter active sites by gaseous oxygen. © 2019 Society of Chemical Industry

Từ khóa


Tài liệu tham khảo

10.1007/s11244-008-9164-2

10.1039/B707343G

10.1002/anie.200604694

10.1016/j.cej.2014.11.115

10.1021/cs5019056

10.1016/j.apcatb.2011.05.050

10.1016/j.apcatb.2016.04.013

10.1021/cs5019953

10.1016/j.rser.2015.08.064

10.1021/ar500426g

10.1039/c1gc15320j

10.1039/C4CY01246A

10.1002/anie.201000762

10.1002/anie.201101772

10.1002/cssc.201000359

10.1039/c3gc40314a

10.1039/C4GC00723A

10.1016/j.cej.2015.08.027

10.1039/C8CC10273B

10.1016/j.apcata.2013.12.008

10.1016/j.jcat.2014.08.003

10.1016/j.apcatb.2014.02.034

10.1016/0926-860X(90)80011-3

10.1016/0926-860X(95)00048-8

10.1021/ie1005096

10.1016/S1872-2067(10)60289-6

10.1016/j.apcatb.2012.08.026

10.1039/c2cy20062g

10.1016/j.jcat.2013.01.014

10.1016/j.apcatb.2005.11.036

10.1016/j.jcat.2011.09.016

10.1021/cs5005568

10.1039/C4CY00556B

10.1038/ncomms2053

10.1016/j.apsusc.2010.07.086

10.1002/cctc.201100161

10.1021/acs.jpclett.9b00925

10.1023/A:1019073723384

10.1016/j.apsusc.2012.05.095

10.1016/0254-0584(91)90037-U

Mihaylov M, 2007, Characterization of the oxidation states of supported gold species by IR spectroscopy of adsorbed CO, Chem Eng Tech, 79, 795

10.1021/jp952259n

10.1016/j.apcata.2010.06.006

10.1006/jcat.1999.2636

10.1002/cphc.200800680

10.1016/j.jcat.2018.10.030

10.1016/j.jcat.2012.11.018

10.1021/ja809883c

10.1002/chem.201002469