Convergent selection pressures drive the evolution of rhodopsin kinetics at high altitudes via nonparallel mechanisms
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aho, 1988, Low retinal noise in animals with low body temperature allows high visual sensitivity, Nature, 334, 348, 10.1038/334348a0
Aminetzach, 2009, Convergent evolution of novel protein function in shrew and lizard venom, Curr. Biol., 19, 1925, 10.1016/j.cub.2009.09.022
Anisimova, 2007, The quest for natural selection in the age of comparative genomics, Heredity, 99, 567, 10.1038/sj.hdy.6801052
Anisimova, 2001, Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution, Mol. Biol. Evol., 18, 1585, 10.1093/oxfordjournals.molbev.a003945
Åqvist, 2017, Cold adaptation of triosephosphate isomerase, Biochemistry, 56, 4169, 10.1021/acs.biochem.7b00523
Beall, 2007, Two routes to functional adaptation: Tibetan and Andean high-altitude natives, Proc. Natl. Acad. Sci. USA, 104, 8655, 10.1073/pnas.0701985104
Bielawski, 2004, A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution, J. Mol. Evol., 59, 121, 10.1007/s00239-004-2597-8
Bofkin, 2007, Variation in evolutionary processes at different codon positions, Mol. Biol. Evol., 24, 513, 10.1093/molbev/msl178
Brodie, 2010, Convergent evolution: pick your poison carefully, Curr. Biol., 20, 152, 10.1016/j.cub.2009.12.029
Castiglione, 2017, Evolution of nonspectral rhodopsin function at high altitudes, Proc. Natl. Acad. Sci., 114, 7385, 10.1073/pnas.1705765114
Chen, 1997, Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod, Proc. Natl. Acad. Sci. USA, 94, 3817, 10.1073/pnas.94.8.3817
Chen, 2013, Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei), Evolution, 67, 2218, 10.1111/evo.12104
Cheviron, 2014, Integrating evolutionary and functional tests of adaptive hypotheses: a case study of altitudinal differentiation in hemoglobin function in an Andean sparrow, Zonotrichia capensis, Mol. Biol. Evol., 31, 2948, 10.1093/molbev/msu234
Chikina, 2016, Hundreds of genes experienced convergent shifts in selective pressure in marine mammals, Mol. Biol. Evol., 33, 2182, 10.1093/molbev/msw112
Cortesi, 2015, Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes, Proc. Natl. Acad. Sci. USA, 112, 1493, 10.1073/pnas.1417803112
Dungan, 2017, Epistatic interactions influence terrestrial-marine functional shifts in cetacean rhodopsin, Proc. R. Soc. B Biol. Sci., 284, 10.1098/rspb.2016.2743
Dungan, 2016, Spectral tuning of killer whale (Orcinus orca) rhodopsin: evidence for positive selection and functional adaptation in a cetacean visual pigment, Mol. Biol. Evol., 33, 323, 10.1093/molbev/msv217
Ebrey, 2001, Vertebrate photoreceptors, Prog. Retin. Eye Res., 20, 49, 10.1016/S1350-9462(00)00014-8
Elde, 2009, Protein kinase R reveals an evolutionary model for defeating viral mimicry, Nature, 457, 485, 10.1038/nature07529
Endler, 1986, Natural selection in the wild
Ernst, 2014, Microbial and animal rhodopsins: structures, functions, and molecular mechanisms, Chem. Rev., 114, 126, 10.1021/cr4003769
Feldman, 2012, Constraint shapes convergence in tetrodotoxin-resistant sodium channels of snakes, Proc. Natl. Acad. Sci., 109, 4556, 10.1073/pnas.1113468109
Fields, 2015, Adaptations of protein structure and function to temperature: there is more than one way to “skin a cat, J. Exp. Biol., 218, 1801, 10.1242/jeb.114298
Foote, 2015, Convergent evolution of the genomes of marine mammals, Nat. Genet., 47, 272, 10.1038/ng.3198
Frederiksen, 2016, Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods, J. Gen. Physiol., 148, 1, 10.1085/jgp.201511538
Govardovskii, 2000, In search of the visual pigment template, Vis. Neurosci., 17, 509, 10.1017/S0952523800174036
Gozem, 2012, The molecular mechanism of thermal noise in rod photoreceptors, Science, 337, 1225, 10.1126/science.1220461
Gregory-Wodzicki, 2000, Uplift history of the central and northern Andes: a review, GSA Bull, 112, 1091, 10.1130/0016-7606(2000)112<1091:UHOTCA>2.0.CO;2
Guo, 2005, Phylogeny and biogeography of Chinese sisorid catfishes re-examined using mitochondrial cytochrome b and 16S rRNA gene sequences, Mol. Phylogenet. Evol., 35, 344, 10.1016/j.ympev.2004.12.015
Guo, 2014, Unusual kinetics of thermal decay of dim-light photoreceptors in vertebrate vision, Proc. Natl. Acad. Sci. USA, 111, 10438, 10.1073/pnas.1410826111
Hauser, 2017, Accelerated evolution and functional divergence of the dim light visual pigment accompanies cichlid colonization of Central America, Mol. Biol. Evol., 34, 2650, 10.1093/molbev/msx192
Hayes, 1999, Natural selection on thermogenic capacity of high-altitude deer mice, Evolution, 53, 1280, 10.1111/j.1558-5646.1999.tb04540.x
Hedges, 2015, Tree of life reveals clock-like speciation and diversification, Mol. Biol. Evol., 32, 835, 10.1093/molbev/msv037
Hofmann, 2009, A G protein-coupled receptor at work: the rhodopsin model, Trends Biochem. Sci., 34, 540, 10.1016/j.tibs.2009.07.005
Horvath, 1993, Atmospheric light absorption-a review, Atmos. Environ. A Gen. Top., 27, 293, 10.1016/0960-1686(93)90104-7
Hughes, 2006, Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes, Proc. Natl. Acad. Sci. USA, 103, 10334, 10.1073/pnas.0601928103
Hunt, 2001, The molecular basis for spectral tuning of rod visual pigments in deep-sea fish, J. Exp. Biol., 204, 3333, 10.1242/jeb.204.19.3333
Imai, 1997, Single amino acid residue as a functional determinant of rod and cone visual pigments, Proc. Natl. Acad. Sci. USA, 94, 2322, 10.1073/pnas.94.6.2322
Imai, 2007, Molecular properties of rhodopsin and rod function, J. Biol. Chem., 282, 6677, 10.1074/jbc.M610086200
Jessen, 1991, Adaptation of bird hemoglobins to high altitudes: demonstration of molecular mechanism by protein engineering, Proc. Natl. Acad. Sci. USA, 88, 6519, 10.1073/pnas.88.15.6519
Kefalov, 2003, Role of visual pigment properties in rod and cone phototransduction, Nature, 425, 526, 10.1038/nature01992
Kochendoerfer, 1999, How color pigments are tuned, Trends Biochem. Sci., 24, 300, 10.1016/S0968-0004(99)01432-2
Körner, 2007, The use of “altitude” in ecological research, Trends Ecol. Evol., 22, 569, 10.1016/j.tree.2007.09.006
Lamb, 2016, Evolution of vertebrate phototransduction: cascade activation, Mol. Biol. Evol., 33, 2064, 10.1093/molbev/msw095
Losos, 2011, Convergence, adaptation, and constraint, Evolution, 65, 1827, 10.1111/j.1558-5646.2011.01289.x
Löytynoja, 2008, Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis, Science, 320, 1632, 10.1126/science.1158395
Lujan, 2015, Extremophile fishes: ecology, evolution, and physiology of teleosts in extreme environments, 107, 10.1007/978-3-319-13362-1_6
Luk, 2016, Modulation of thermal noise and spectral sensitivity in Lake Baikal cottoid fish rhodopsins, Sci. Rep., 6, 10.1038/srep38425
Ma, 2016, Comprehensive transcriptome analysis of six catfish species from an altitude gradient reveals adaptive evolution in Tibetan fishes, G3, 6, 1, 10.1534/g3.115.024448
Manceau, 2010, Convergence in pigmentation at multiple levels: mutations, genes and function, Philos. Trans. R. Soc. B Biol. Sci., 365, 2439, 10.1098/rstb.2010.0104
McGlothlin, 2016, Historical contingency in a multigene family facilitates adaptive evolution of toxin resistance, Curr. Biol., 26, 1616, 10.1016/j.cub.2016.04.056
Morrow, 2017, An experimental comparison of human and bovine rhodopsin provides insight into the molecular basis of retinal disease, FEBS Lett, 591, 1720, 10.1002/1873-3468.12637
Natarajan, 2016, Predictable convergence in hemoglobin function has unpredictable molecular underpinnings, Science, 354, 336, 10.1126/science.aaf9070
Nevado, 2016, Widespread adaptive evolution during repeated evolutionary radiations in New World lupins, Nat. Commun., 7, 10.1038/ncomms12384
Nguyen, 2016, Evolutionary drivers of thermoadaptation in enzyme catalysis, Science, 355, 289, 10.1126/science.aah3717
Niemiller, 2013, Evidence for repeated loss of selective constraint in rhodopsin of amblyopsid cavefishes (teleostei: Amblyopsidae), Evolution, 67, 732, 10.1111/j.1558-5646.2012.01822.x
Okada, 2004, The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure, J. Mol. Biol., 342, 571, 10.1016/j.jmb.2004.07.044
Palczewski, 2006, G protein-coupled receptor rhodopsin, Annu. Rev. Biochem., 75, 743, 10.1146/annurev.biochem.75.103004.142743
Parker, 2013, Genome-wide signatures of convergent evolution in echolocating mammals, Nature, 502, 1, 10.1038/nature12511
Partha, 2017, Subterranean mammals show convergent regression in ocular genes and enhancers, along with adaptation to tunneling, eLife, 6, 10.7554/eLife.25884
Patel, 2012, Convergent evolution of escape from hepaciviral antagonism in primates, PLoS Biol, 10, e1001282, 10.1371/journal.pbio.1001282
Peng, 2004, Phylogenetic relationships of glyptosternoid fishes (Siluriformes: Sisoridae) inferred from mitochondrial cytochrome b gene sequences, Mol. Phylogenet. Evol., 31, 979, 10.1016/j.ympev.2003.10.023
Peng, 2006, Uplift of the Tibetan plateau: evidence from divergence times of glyptosternoid catfishes, Mol. Phylogenet. Evol., 39, 568, 10.1016/j.ympev.2005.10.016
Projecto-Garcia, 2013, Repeated elevational transitions in hemoglobin function during the evolution of Andean hummingbirds, Proc. Natl. Acad. Sci. USA, 110, 20669, 10.1073/pnas.1315456110
Protas, 2006, Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism, Nat. Genet., 38, 107, 10.1038/ng1700
Rosenblum, 2010, Molecular and functional basis of phenotypic convergence in white lizards at White Sands, Proc. Natl. Acad. Sci. USA, 107, 2113, 10.1073/pnas.0911042107
Royden, 2008, The geological evolution of the Tibetan plateau, Science, 321, 1054, 10.1126/science.1155371
Rubin, 2016, Comparative genomics reveals convergent rates of evolution in ant-plant mutualisms, Nat. Commun., 7
Schaefer, 2011, Historical biogeography of neotropical freshwater fishes, 259
Schaefer, 2010, Rivers as islands: determinants of the distribution of Andean astroblepid catfishes, J. Fish Biol., 77, 2373, 10.1111/j.1095-8649.2010.02822.x
Schaefer, 2011, Nucleotide sequence data confirm diagnosis and local endemism of variable morphospecies of Andean astroblepid catfishes (Siluriformes: Astroblepidae), Zool. J. Linn. Soc., 162, 90, 10.1111/j.1096-3642.2010.00673.x
Schafer, 2016, Decay of an active GPCR: conformational dynamics govern agonist rebinding and persistence of an active, yet empty, receptor state, Proc. Natl. Acad. Sci., 113, 11961, 10.1073/pnas.1606347113
Schott, 2014, Divergent positive selection in rhodopsin from lake and riverine cichlid fishes, Mol. Biol. Evol., 31, 1149, 10.1093/molbev/msu064
Siddiqui, 2006, Cold-adapted enzymes, Annu. Rev. Biochem., 75, 403, 10.1146/annurev.biochem.75.103004.142723
Sommaruga, 1999, Dissolved organic carbon concentration and phytoplankton biomass in high-mountain lakes of the Austrian Alps: potential effect of climatic warming an UV underwater attenuation, Arct. Antarct. Alp. Res., 31, 247, 10.2307/1552253
Stojanovic, 2003, Retinitis pigmentosa rhodopsin mutations L125R and A164V perturb critical interhelical interactions: new insights through compensatory mutations and crystal structure analysis, J. Biol. Chem., 278, 39020, 10.1074/jbc.M303625200
Storz, 2016, Causes of molecular convergence and parallelism in protein evolution, Nat. Rev. Genet., 17, 239, 10.1038/nrg.2016.11
Storz, 2007, The molecular basis of high-altitude adaptation in deer mice, PLoS Genet, 3, e45, 10.1371/journal.pgen.0030045
Sugawara, 2010, Vertebrate rhodopsin adaptation to dim light via rapid meta-II intermediate formation, Mol. Biol. Evol., 27, 506, 10.1093/molbev/msp252
Sullivan, 2006, A phylogenetic analysis of the major groups of catfishes (Teleostei: Siluriformes) using rag1 and rag2 nuclear gene sequences, Mol. Phylogenet. Evol, 41, 636, 10.1016/j.ympev.2006.05.044
Tenaillon, 2012, The molecular diversity of adaptive convergence, Science, 335, 457, 10.1126/science.1212986
Thomas, 2015, Determining the null model for detecting adaptive convergence from genomic data: a case study using echolocating mammals, Mol. Biol. Evol, 32, 1232, 10.1093/molbev/msv013
Eps, 2017, Conformational equilibria of light-activated rhodopsin in nanodiscs, Proc. Natl. Acad. Sci., 114, E3268, 10.1073/pnas.1620405114
Venkatakrishnan, 2016, Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region, Nature, 536, 484, 10.1038/nature19107
Verberk, 2011, Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns, Ecology, 92, 1565, 10.1890/10-2369.1
Weadick, 2012, An improved likelihood ratio test for detecting site-specific functional divergence among clades of protein-coding genes, Mol. Biol. Evol., 29, 1297, 10.1093/molbev/msr311
Xie, 2003, An opsin mutant with increased thermal stability, Biochemistry, 42, 1995, 10.1021/bi020611z
Xing, 2017, Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot, Proc. Natl. Acad. Sci. USA, 114, E3444, 10.1073/pnas.1616063114
Yang, 2007, PAML 4: phylogenetic analysis by maximum likelihood, Mol. Biol. Evol., 24, 1586, 10.1093/molbev/msm088
Yang, 2005, Bayes empirical Bayes inference of amino acid sites under positive selection, Mol. Biol. Evol., 22, 1107, 10.1093/molbev/msi097
Yokoyama, 2008, Elucidation of phenotypic adaptations: molecular analyses of dim-light vision proteins in vertebrates, Proc. Natl. Acad. Sci. USA, 105, 13480, 10.1073/pnas.0802426105
Yue, 2017, Spontaneous activation of visual pigments in relation to openness/closeness of chromophore-binding pocket, Elife, 6, 1, 10.7554/eLife.18492
Zhou, 2016, Diversification of Sisorid catfishes (Teleostei: Siluriformes) in relation to the orogeny of the Himalayan plateau, Sci. Bull., 61, 991, 10.1007/s11434-016-1104-0
Zou, 2015a, Are convergent and parallel amino acid substitutions in protein evolution more prevalent than neutral expectations, Mol. Biol. Evol., 32, 2085, 10.1093/molbev/msv091