Convergence rate for a Radau hp collocation method applied to constrained optimal control
Tóm tắt
For control problems with control constraints, a local convergence rate is established for an hp-method based on collocation at the Radau quadrature points in each mesh interval of the discretization. If the continuous problem has a sufficiently smooth solution and the Hamiltonian satisfies a strong convexity condition, then the discrete problem possesses a local minimizer in a neighborhood of the continuous solution, and as either the number of collocation points or the number of mesh intervals increase, the discrete solution convergences to the continuous solution in the sup-norm. The convergence is exponentially fast with respect to the degree of the polynomials on each mesh interval, while the error is bounded by a polynomial in the mesh spacing. An advantage of the hp-scheme over global polynomials is that there is a convergence guarantee when the mesh is sufficiently small, while the convergence result for global polynomials requires that a norm of the linearized dynamics is sufficiently small. Numerical examples explore the convergence theory.
Tài liệu tham khảo
Babuška, I., Suri, M.: The h-p version of the finite element method with quasiuniform meshes, RAIRO. Modélisation Mathématique et Analyse Numérique 21, 199–238 (1987)
Babuška, I., Suri, M.: The p- and h-p version of the finite element method, an overview. Comput. Methods Appl. Mech. Eng. 80, 5–26 (1990)
Babuška, I., Suri, M.: The p and h-p version of the finite element method, basic principles and properties. SIAM Rev. 36, 578–632 (1994)
Benson, D.A., Huntington, G.T., Thorvaldsen, T.P., Rao, A.V.: Direct trajectory optimization and costate estimation via an orthogonal collocation method. J. Guid. Control Dyn. 29, 1435–1440 (2006)
Bernardi, C., Maday, Y.: Polynomial interpolation results in Sobolev spaces. J. Comput. Appl. Math. 43, 53–82 (1992)
Betts, J.T.: Sparse optimization suite. In: Applied Mathematical Analysis. LLC, Issaquah (2013)
Biegler, L.T., Zavala, V.M.: Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide optimization. Comput. Chem. Eng. 33, 575–582 (2008)
Bonnans, J.F., Laurent-Varin, J.: Computation of order conditions for symplectic partitioned Runge–Kutta schemes with application to optimal control. Numer. Math. 103, 1–10 (2006)
Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods, Fundamentals in Single Domains. Springer, Berlin (2006)
Chen, W., Du, W., Hager, W.W., Yang, L.: Bounds for integration matrices that arise in Gauss and Radau collocation. Comput. Optim. Appl. (2019). https://doi.org/10.1007/s10589-019-00099-5
Darby, C.L., Hager, W.W., Rao, A.V.: Direct trajectory optimization using a variable low-order adaptive pseudospectral method. J. Spacecr. Rockets 48, 433–445 (2011)
Darby, C.L., Hager, W.W., Rao, A.V.: An hp-adaptive pseudospectral method for solving optimal control problems. Optim. Control Appl. Methods 32, 476–502 (2011)
Dennis, M.E., Hager, W.W., Rao, A.V.: Computational method for optimal guidance and control using adaptive Gaussian quadrature collocation. J. Guid. Control Dyn. (2019). https://doi.org/10.2514/1.G003943
Dontchev, A., Hager, W.W., Poore, A., Yang, B.: Optimality, stability, and convergence in nonlinear control. Appl. Math. Optim. 31, 297–326 (1995)
Dontchev, A.L., Hager, W.W.: Lipschitzian stability in nonlinear control and optimization. SIAM J. Control Optim. 31, 569–603 (1993)
Dontchev, A.L., Hager, W.W.: A new approach to Lipschitz continuity in state constrained optimal control. Syst. Control Lett. 35, 137–143 (1998)
Dontchev, A.L., Hager, W.W.: The Euler approximation in state constrained optimal control. Math. Comput. 70, 173–203 (2000)
Dontchev, A.L., Hager, W.W., Veliov, V.M.: Second-order Runge–Kutta approximations in constrained optimal control. SIAM J. Numer. Anal. 38, 202–226 (2000)
Elnagar, G., Kazemi, M., Razzaghi, M.: The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Automat. Control 40, 1793–1796 (1995)
Elnagar, G.N., Kazemi, M.A.: Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems. Comput. Optim. Appl. 11, 195–217 (1998)
Elschner, J.: The h-p-version of spline approximation methods for Melin convolution equations. J. Integral Equ. Appl. 5, 47–73 (1993)
Fahroo, F., Ross, I.M.: Costate estimation by a Legendre pseudospectral method. J. Guid. Control Dyn. 24, 270–277 (2001)
Fahroo, F., Ross, I.M.: Direct trajectory optimization by a Chebyshev pseudospectral method. J. Guid. Control Dyn. 25, 160–166 (2002)
Garg, D., Patterson, M.A., Darby, C.L., Françolin, C., Huntington, G.T., Hager, W.W., Rao, A.V.: Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method. Comput. Optim. Appl. 49, 335–358 (2011)
Garg, D., Patterson, M.A., Hager, W.W., Rao, A.V., Benson, D.A., Huntington, G.T.: A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46, 1843–1851 (2010)
Gong, Q., Ross, I.M., Kang, W., Fahroo, F.: Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control. Comput. Optim. Appl. 41, 307–335 (2008)
Gui, W., Babuška, I.: The h, p and h-p versions of the finite element method in 1 dimension. Part I. The error analysis of the p-version. Numer. Math. 49, 577–612 (1986)
Gui, W., Babuška, I.: The h, p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h-and h-p versions. Numer. Math. 49, 613–657 (1986)
Gui, W., Babuška, I.: The h, p and h-p versions of the finite element method in 1 dimension. Part III. The adaptive h-p version. Numer. Math. 49, 659–683 (1986)
Hager, W.W.: Multiplier methods for nonlinear optimal control. SIAM J. Numer. Anal. 27, 1061–1080 (1990)
Hager, W.W.: Runge–Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87, 247–282 (2000)
Hager, W.W.: Numerical analysis in optimal control. In: Hoffmann, K.-H., Lasiecka, I., Leugering, G., Sprekels, J., Tröltzsch, F. (eds.) International Series of Numerical Mathematics, vol. 139, pp. 83–93. Birkhauser Verlag, Basel (2001)
Hager, W.W., Hou, H., Rao, A.V.: Convergence rate for a Radau collocation method applied to unconstrained optimal control (2015). arXiv:1508.03783
Hager, W.W., Hou, H., Rao, A.V.: Convergence rate for a Gauss collocation method applied to unconstrained optimal control. J. Optim. Theory Appl. 169, 801–824 (2016)
Hager, W.W., Ianculescu, G.: Dual approximations in optimal control. SIAM J. Control Optim. 22, 423–465 (1984)
Hager, W.W., Liu, J., Mohapatra, S., Rao, A.V., Wang, X.-S.: Convergence rate for a Gauss collocation method applied to constrained optimal control. SIAM J. Control Optim. 56, 1386–1411 (2018)
Hager, W.W., Liu, J., Mohapatra, S., Rao, A.V., Wang, X.-S.: A pseudospectral method for optimal control based on collocation at the gauss points. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 2490–2495 (Dec 2018)
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2013)
Kang, W.: The rate of convergence for a pseudospectral optimal control method. In: Proceeding of the 47th IEEE Conference on Decision and Control, pp. 521–527. IEEE (2008)
Kang, W.: Rate of convergence for the Legendre pseudospectral optimal control of feedback linearizable systems. J. Control Theory Appl. 8, 391–405 (2010)
Liu, F., Hager, W.W., Rao, A.V.: Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh size reduction. J. Frankl. Inst. 352, 4081–4106 (2015)
Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)
Patterson, M.A., Hager, W.W., Rao, A.V.: A \(ph\) mesh refinement method for optimal control. Optim. Control Appl. Meth. 36, 398–421 (2015)
Patterson, M.A., Rao, A.V.: GPOPS-II: A MATLAB software for solving multi-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse non-linear programming. ACM Trans. Math. Softw. 41, 1–37 (2014)
Patterson, M.A., Rao, A.V.: \({\mathbb{GPOPS-II}}\), a MATLAB software for solving multiple-phase optimal control problems using \(hp\)-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw. 41, 1–37 (2015)
Shen, J., Tang, T., Wang, L.-L.: Spectral Methods. Springer, Berlin (2011)
Williams, P.: Jacobi pseudospectral method for solving optimal control problems. J. Guid. Control Dyn. 27, 293–297 (2004)