Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard

American Geophysical Union (AGU) - Tập 117 Số B4 - 2012
Thomas Ader1,2, Jean‐Philippe Avouac1, Jing Liu‐Zeng3, H. Lyon‐Caen4, Laurent Bollinger5, J. Galetzka1, J. F. Genrich1, Marion Y. Thomas1, Kristel Chanard1, Soma Nath Sapkota6, Sudhir Rajaure6, Prithvi Shrestha6, Lin Ding3, M. Flouzat5
1Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
2Laboratoire de Géologie, École Normale Supérieure, CNRS, Paris, France
3Key Laboratory of Continental Collision and Tibetan Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
4Laboratoire de Géologie, Ecole Normale Supérieure, CNRS, Paris, France
5Commissariat à l’Énergie Atomique DAM DIF, Arpajon, France
6National Seismological Centre Department of Mines and Geology Kathmandu Nepal

Tóm tắt

We document geodetic strain across the Nepal Himalaya using GPS times series from 30 stations in Nepal and southern Tibet, in addition to previously published campaign GPS points and leveling data and determine the pattern of interseismic coupling on the Main Himalayan Thrust fault (MHT). The noise on the daily GPS positions is modeled as a combination of white and colored noise, in order to infer secular velocities at the stations with consistent uncertainties. We then locate the pole of rotation of the Indian plate in the ITRF 2005 reference frame at longitude = − 1.34° ± 3.31°, latitude = 51.4° ± 0.3° with an angular velocity of Ω = 0.5029 ± 0.0072°/Myr. The pattern of coupling on the MHT is computed on a fault dipping 10° to the north and whose strike roughly follows the arcuate shape of the Himalaya. The model indicates that the MHT is locked from the surface to a distance of approximately 100 km down dip, corresponding to a depth of 15 to 20 km. In map view, the transition zone between the locked portion of the MHT and the portion which is creeping at the long term slip rate seems to be at the most a few tens of kilometers wide and coincides with the belt of midcrustal microseismicity underneath the Himalaya. According to a previous study based on thermokinematic modeling of thermochronological and thermobarometric data, this transition seems to happen in a zone where the temperature reaches 350°C. The convergence between India and South Tibet proceeds at a rate of 17.8 ± 0.5 mm/yr in central and eastern Nepal and 20.5 ± 1 mm/yr in western Nepal. The moment deficit due to locking of the MHT in the interseismic period accrues at a rate of 6.6 ± 0.4 × 1019 Nm/yr on the MHT underneath Nepal. For comparison, the moment released by the seismicity over the past 500 years, including 14 MW ≥ 7 earthquakes with moment magnitudes up to 8.5, amounts to only 0.9 × 1019 Nm/yr, indicating a large deficit of seismic slip over that period or very infrequent large slow slip events. No large slow slip event has been observed however over the 20 years covered by geodetic measurements in the Nepal Himalaya. We discuss the magnitude and return period of M > 8 earthquakes required to balance the long term slip budget on the MHT.

Từ khóa


Tài liệu tham khảo

10.1007/978-3-642-00860-3_12

10.1111/j.1365-246X.2004.02323.x

10.1029/JB091iB14p13803

10.1016/S0065-2687(03)46001-9

10.1016/S1251-8050(01)01573-7

10.1029/2008GL035468

10.1007/s00190-006-0030-3

10.1016/j.epsl.2007.11.021

Bilham R., 2004, Earthquakes in India and the Himalaya: Tectonics, geodesy and history, Ann. Geophys., 47, 839

Bilham R., 1995, Entertaining a great earthquake in western Nepal: Historic activity and geodetic test for the development of strain, J. Nepal Geol. Soc., 11, 73

10.1038/386061a0

10.1029/95JB00862

10.1029/2003JB002911

Brooks B. A., 2011, Orogenic‐wedge deformation and potential for great earthquakes in the central Andean backarc, Lett. Nat., 4, 380

10.1029/2005JB003648

10.1029/2000JB900032

10.1029/2002JB002151

10.1029/JB082i020p02945

10.1029/2007JB004981

10.1029/2006GL029155

10.1029/1999JB900388

Gutenberg B., 1954, Seismicity of the Earth and Associated Phenomena

10.1038/386595a0

10.1029/2008JB006126

Herring T. R.King andS.McClusky(2009) GAMIT reference manual and GLOBK reference manual release 10.3 Mass. Inst. of Technol. Cambridge.

10.1016/S0012-821X(04)00063-9

10.1029/2005GL024624

10.1007/s00024-009-0510-5

10.1029/94JB00714

10.1029/1999GL900416

10.1111/j.1365-246X.2004.02180.x

10.1029/2010JB007903

10.1038/ngeo843

10.1029/2004JB003309

10.1029/2009JB006789

10.1029/96JB02945

10.1029/1998JB900043

10.1029/1999JB900292

10.1126/science.1104804

10.1029/2008JB006248

10.1146/annurev.earth.26.1.643

10.1130/G31439.1

10.1029/2001JB000555

Molnar P., 1979, Earthquake recurrence intervals and plate tectonics, Bull. Seismol. Soc. Am., 69, 115, 10.1785/BSSA0690010115

Molnar P., 1987, The distribution of intensity associated with the 1905 Kangra earthquake and bounds on the extent of the rupture zone, J. Geol. Soc. India, 29, 211

10.1038/nature09349

Mugnier J., 2003, Episodicity and rates of thrust‐sheet motion in the Himalayas (western Nepal), AAPG Mem., 82, 1

10.1130/SPE232-p243

10.1785/BSSA0750041135

10.1038/nature10227

10.1029/94GL02971

10.1016/S1367-9120(99)00034-6

10.1029/2006JB004399

10.1038/nature09062

10.1111/j.1365-246X.2011.04958.x

Press W., 1992, Numerical Recipes in C: The Art of Scientific Computing

10.1029/JB088iB06p04984

10.1029/2006RG000208

10.1016/0040-1951(83)90201-9

Socquet A.(2003) Accomodation du mouvement relatif entre l’Inde et le Sonde: Depuis la Faille de Sagaing jusqu’à la Syntaxe Est Himalayenne PhD thesis Univ. Paris XI Paris.

10.1130/GES00606.1

10.1029/2004JB003203

10.1046/j.1365-246X.2001.00524.x

10.1785/0120000006

10.1029/2004JB003241

10.1007/s00190-002-0283-4

10.1029/2003JB002741

10.1029/97JB01380

10.1038/366557a0