Convergence of the reweighted ℓ 1 minimization algorithm for ℓ 2–ℓ p minimization
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bian, W., Chen, X.: Smoothing neural network for constrained non-Lipschitz optimization with applications. IEEE Trans. Neural Netw. 23, 399–411 (2012)
Byrd, R.H., Chin, G.M., Nocedal, J., Wu, Y.: Sample size selection in optimization methods for machine learning. Math. Program. 134, 127–155 (2012)
Candès, E., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted l 1 minimization. J. Fourier Anal. Appl. 14, 877–905 (2008)
Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14, 707–710 (2007)
Chartrand, R., Staneva, V.: Restricted isometry properties and nonconvex compressive sensing. Inverse Probl. 24, 1–14 (2008)
Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: ICASSP 2008, March 2008, pp. 3869–3872 (2008)
Chen, X., Zhou, W.: Convergence of reweighted l 1 minimization algorithms and unique solution of truncated l p minimization, Department of Applied Mathematics, The Hong Kong Polytechnic University (2010)
Chen, X., Xu, F., Ye, Y.: Lower bound theory of nonzero entries in solutions of l 2–l p minimization. SIAM J. Sci. Comput. 32, 2832–2852 (2010)
Chen, X., Ng, M., Zhang, C.: Nonconvex l p regularization and box constrained model for image restoration. IEEE Trans. Image Process. 21, 4709–4721 (2012)
Chen, X., Niu, L., Yuan, Y.: Optimality conditions and smoothing trust region Newton method for non-Lipschitz optimization, Department of Applied Mathematics, The Hong Kong Polytechnic University (2012)
Chen, X., Ge, D., Wang, Z., Ye, Y.: Complexity of unconstrained L 2-L p minimization. Math. Program. doi: 10.1007/s10107-012-0613-0
Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
Donoho, D.L., Tsaig, Y.: Fast solution of l 1-norm minimization problems when the solution may be sparse. IEEE Trans. Inf. Theory 54, 4789–4812 (2008)
Figueiredo, M.A.T., Bioucas-Dias, J.M., Nowak, R.D.: Majorization-minimization algorithms for wavelet-based image restoration. IEEE Trans. Image Process. 16, 2980–2991 (2007)
Foucart, S., Lai, M.J.: Sparsest solutions of under-determined linear systems via l q minimization for 0<q≤1. Appl. Comput. Harmon. Anal. 26, 395–407 (2009)
Fukushima SOR, M.: Jacobi-type iterative methods for solving ℓ 1–ℓ 2 problems by way of Fenchel duality. Optim. Lett. 6, 679–686 (2012)
Ge, D., Jiang, X., Ye, Y.: A note on complexity of L p minimization. Math. Program. 129, 285–299 (2011)
Huang, J., Horowitz, J.L., Ma, S.: Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann. Stat. 36, 587–613 (2008)
Lai, M., Wang, Y.: An unconstrained l q minimization with 0<q<1 for sparse solution of under-determined linear systems. SIAM J. Optim. 21, 82–101 (2011)
Nikolova, M.: Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. Multiscale Model. Simul. 4, 960–991 (2005)
Nikolova, M., Ng, M.K., Zhang, S., Ching, W.: Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization. SIAM J. Imaging Sci. 1, 2–25 (2008)
Nocedal, J.: Second-order methods for stochastic, semi-smooth and nonlinear programming. In: Plenary Lecture, International Symposium on Mathematical Programming, Berlin (2012)
Wang, Y., Yin, W.: Sparse signal reconstruction via iterative support detection. SIAM J. Imaging Sci. 3, 462–491 (2010)