Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems
Tóm tắt
Numerical solution of fractional order diffusion problems with homogeneous Dirichlet boundary conditions is investigated on a square domain. An appropriate extension is applied to have a well-posed problem on R2 and the solution on the square is regarded as a localization. For the numerical approximation a finite difference method is applied combined with the matrix transformation method. Here the discrete fractional Laplacian is approximated with a matrix power instead of computing the complicated approximations of fractional order derivatives. The spatial convergence of this method is proved and demonstrated by some numerical experiments.
Tài liệu tham khảo
citation_title=Nonhomogeneous boundary conditions for the spectral fractional Laplacian; citation_inbook_title=To appear in Ann. Inst. Henri Poincaré, Anal. Non. Linéaire; citation_publication_date=2016; citation_id=CR1; citation_author=N. Abatangelo; citation_author=L. Dupaigne
A. Bátkai, P. Csomós, B. Farkas: Semigroups for Numerical Analysis. Internet-Seminar Manuscript, 2012, https://isem-mathematik.uibk.ac.at.
citation_journal_title=Water Resour. Res.; citation_title=Application of a fractional advection-dispersion equation; citation_author=D. A. Benson, S. W. Wheatcraft, M. M. Meerschaert; citation_volume=36; citation_publication_date=2000; citation_pages=1403-1412; citation_doi=10.1029/2000WR900031; citation_id=CR3
citation_journal_title=Calcolo; citation_title=Spectral and pseudo-spectral methods for parabolic problems with non periodic boundary conditions; citation_author=C. Canuto, A. Quarteroni; citation_volume=18; citation_publication_date=1981; citation_pages=197-217; citation_doi=10.1007/BF02576357; citation_id=CR4
citation_journal_title=Bull. Sci. Math.; citation_title=Hitchhiker’s guide to the fractional Sobolev spaces; citation_author=E. Nezza, G. Palatucci, E. Valdinoci; citation_volume=136; citation_publication_date=2012; citation_pages=521-573; citation_doi=10.1016/j.bulsci.2011.12.004; citation_id=CR5
citation_journal_title=SIAM Rev.; citation_title=Analysis and approximation of nonlocal diffusion problems with volume constraints; citation_author=Q. Du, M. Gunzburger, R. B. Lehoucq, K. Zhou; citation_volume=54; citation_publication_date=2012; citation_pages=667-696; citation_doi=10.1137/110833294; citation_id=CR6
citation_journal_title=Math. Models Methods Appl. Sci.; citation_title=A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws; citation_author=Q. Du, M. Gunzburger, R. B. Lehoucq, K. Zhou; citation_volume=23; citation_publication_date=2013; citation_pages=493-540; citation_doi=10.1142/S0218202512500546; citation_id=CR7
citation_journal_title=Nature; citation_title=Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer; citation_author=A. M. Edwards, R. A. Phillips, N. W. Watkins, M. P. Freeman, E. J. Murphy, V. Afanasyev, S. V. Buldyrev, M. G. E. Luz, E. P. Raposo, H. E. Stanley, G. M. Viswanathan; citation_volume=449; citation_publication_date=2007; citation_pages=1044-1048; citation_doi=10.1038/nature06199; citation_id=CR8
citation_title=One-Parameter Semigroups for Linear Evolution Equations; citation_publication_date=2000; citation_id=CR9; citation_author=K.-J. Engel; citation_author=R. Nagel; citation_publisher=Springer
citation_journal_title=Appl. Math. Comput.; citation_title=Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation; citation_author=L. B. Feng, P. Zhuang, F. Liu, I. Turner; citation_volume=257; citation_publication_date=2015; citation_pages=52-65; citation_id=CR10
citation_title=Table of Integrals, Series, and Products; citation_publication_date=2000; citation_id=CR11; citation_author=I. S. Gradshteyn; citation_author=I. M. Ryzhik; citation_publisher=Academic Press
citation_journal_title=I. Fract. Calc. Appl. Anal.; citation_title=Numerical approximation of a fractional-in-space diffusion equation; citation_author=M. Ilic, F. Liu, I. Turner, V. Anh; citation_volume=8; citation_publication_date=2005; citation_pages=323-341; citation_id=CR12
citation_journal_title=Fract. Calc. Appl. Anal.; citation_title=Numerical approximation of a fractional-in-space diffusion equation. II. With nonhomogeneous boundary conditions; citation_author=M. Ilic, F. Liu, I. Turner, V. Anh; citation_volume=9; citation_publication_date=2006; citation_pages=333-349; citation_id=CR13
citation_journal_title=IMA J. Numer. Anal.; citation_title=A restarted Lanczos approximation to functions of a symmetric matrix; citation_author=M. Ilić, I. W. Turner, D. P. Simpson; citation_volume=30; citation_publication_date=2010; citation_pages=1044-1061; citation_doi=10.1093/imanum/drp003; citation_id=CR14
citation_title=Theory and Applications of Fractional Differential Equations; citation_publication_date=2006; citation_id=CR15; citation_author=A. A. Kilbas; citation_author=H. M. Srivastava; citation_author=J. J. Trujillo; citation_publisher=Elsevier
citation_journal_title=Comput. Math. Appl.; citation_title=Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion; citation_author=C. Li, Z. Zhao, Y. Chen; citation_volume=62; citation_publication_date=2011; citation_pages=855-875; citation_doi=10.1016/j.camwa.2011.02.045; citation_id=CR16
citation_journal_title=ANZIAM J.; citation_title=A fractional-order implicit difference approximation for the space-time fractional diffusion equation; citation_author=F. Liu, P. Zhuang, V. Anh, I. Turner; citation_volume=47; citation_publication_date=2005; citation_pages=C48-C68; citation_doi=10.21914/anziamj.v47i0.1030; citation_id=CR17
citation_journal_title=Fract. Calc. Appl. Anal.; citation_title=The fundamental solution of the space-time fractional diffusion equation; citation_author=F. Mainardi, Y. Luchko, G. Pagnini; citation_volume=4; citation_publication_date=2001; citation_pages=153-192; citation_id=CR18
citation_journal_title=J. Comput. Appl. Math.; citation_title=Finite difference approximations for fractional advection-dispersion flow equations; citation_author=M. M. Meerschaert, C. Tadjeran; citation_volume=172; citation_publication_date=2004; citation_pages=65-77; citation_doi=10.1016/j.cam.2004.01.033; citation_id=CR19
citation_journal_title=Fract. Calc. Appl. Anal.; citation_title=The fractional Laplacian as a limiting case of a self-similar spring model and applications to n-dimensional anomalous diffusion; citation_author=T. Michelitsch, G. Maugin, A. Nowakowski, F. Nicolleau, M. Rahman; citation_volume=16; citation_publication_date=2013; citation_pages=827-859; citation_doi=10.2478/s13540-013-0052-5; citation_id=CR20
citation_journal_title=Found. Comput. Math.; citation_title=A PDE approach to fractional diffusion in general domains: a priori error analysis; citation_author=R. H. Nochetto, E. Otárola, A. J. Salgado; citation_volume=15; citation_publication_date=2015; citation_pages=733-791; citation_doi=10.1007/s10208-014-9208-x; citation_id=CR21
citation_journal_title=Math. Comput.; citation_title=Spectral and pseudo spectral methods for advection equations; citation_author=J. E. Pasciak; citation_volume=35; citation_publication_date=1980; citation_pages=1081-1092; citation_id=CR22
citation_title=Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications. Mathematics in Science and Engineering 198; citation_publication_date=1999; citation_id=CR23; citation_author=I. Podlubny; citation_publisher=Academic Press
citation_title=Fractional Integrals and Derivatives: Theory and Applications; citation_publication_date=1993; citation_id=CR24; citation_author=S. G. Samko; citation_author=A. A. Kilbas; citation_author=O. I. Marichev; citation_publisher=Gordon and Breach
citation_journal_title=Open Math. (electronic only); citation_title=A finite difference method for fractional diffusion equations with Neumann boundary conditions; citation_author=B. J. Szekeres, F. Izsák; citation_volume=13; citation_publication_date=2015; citation_pages=581-600; citation_id=CR25
citation_journal_title=J. Comput. Appl. Math.; citation_title=Finite element approximation of fractional order elliptic boundary value problems; citation_author=B. J. Szekeres, F. Izsák; citation_volume=292; citation_publication_date=2016; citation_pages=553-561; citation_doi=10.1016/j.cam.2015.07.026; citation_id=CR26
citation_journal_title=J. Comput. Phys.; citation_title=A second-order accurate numerical approximation for the fractional diffusion equation; citation_author=C. Tadjeran, M. M. Meerschaert, H.-P. Scheffler; citation_volume=213; citation_publication_date=2006; citation_pages=205-213; citation_doi=10.1016/j.jcp.2005.08.008; citation_id=CR27
citation_journal_title=Math. Comput.; citation_title=A class of second order difference approximations for solving space fractional diffusion equations; citation_author=W. Tian, H. Zhou, W. Deng; citation_volume=84; citation_publication_date=2015; citation_pages=1703-1727; citation_doi=10.1090/S0025-5718-2015-02917-2; citation_id=CR28
citation_journal_title=Appl. Math. Model.; citation_title=A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction-diffusion equations; citation_author=Q. Yang, I. Turner, T. Moroney, F. Liu; citation_volume=38; citation_publication_date=2014; citation_pages=3755-3762; citation_doi=10.1016/j.apm.2014.02.005; citation_id=CR29
citation_journal_title=J. Sci. Comput.; citation_title=Quasi-compact finite difference schemes for space fractional diffusion equations; citation_author=H. Zhou, W. Tian, W. Deng; citation_volume=56; citation_publication_date=2013; citation_pages=45-66; citation_doi=10.1007/s10915-012-9661-0; citation_id=CR30