Convergence of proximal splitting algorithms in $\operatorname{CAT}(\kappa)$ spaces and beyond
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ariza-Ruiz, D., López-Acedo, G., Nicolae, A.: The asymptotic behavior of the composition of firmly nonexpansive mappings. J. Optim. Theory Appl. 167, 409–429 (2015)
Aspelmeier, T., Charitha, C., Luke, D.R.: Local linear convergence of the ADMM/Douglas–Rachford algorithms without strong convexity and application to statistical imaging. SIAM J. Imaging Sci. 9(2), 842–868 (2016)
Bërdëllima, A.: Investigations in Hadamard Spaces. PhD thesis, Georg-August Universität Göttingen, Göttingen (2020)
Bërdëllima, A., Lauster, F., Luke, D.R.: α-firmly nonexpansive operators on metric spaces. arXiv:2104.11302 (2021)
Bolte, J., Daniilidis, A., Lewis, A.: The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17, 1205–1223 (2006)
Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of Lojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Am. Math. Soc. 362(6), 3319–3363 (2010)
Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings, 2nd edn. Springer, Dordrecht (2014)
Izuchukwu, C., Ugwunnadi, G.C., Mewomo, O.T., Khan, A.R., Abbas, M.: Proximal-type algorithms for split minimization problem in P-uniformly convex metric spaces. Numer. Algorithms 82(3), 909–935 (2019)
Kuwae, K.: Jensen’s inequality on convex spaces. Calc. Var. Partial Differ. Equ. 49(3–4), 1359–1378 (2014)
Luke, D.R., Teboulle, M., Thao, N.H.: Necessary conditions for linear convergence of iterated expansive, set-valued mappings. Math. Program. 180, 1–31 (2018)
Luke, D.R., Thao, N.H., Tam, M.K.: Quantitative convergence analysis of iterated expansive, set-valued mappings. Math. Oper. Res. 43(4), 1143–1176 (2018)
Naor, A., Silberman, L.: Poincaré inequalities, embeddings, and wild groups. Compos. Math. 147(5), 1546–1572 (2011)