Convergence of distorted Brownian motions and singular Hamiltonians
Tóm tắt
We prove a convergence theorem for sequences of Diffusion Processes corresponding to Dirichlet Forms of the kind
$$\varepsilon _\phi \left( {f,g} \right) = \tfrac{1}{2}\int_{\mathbb{R}^d } {\nabla f} \left( x \right) \cdot \nabla g\left( x \right)\phi ^2 \left( x \right)dx$$
.We obtain convergence in total variation norm of the corresponding probability measures on the path space C(ℝ+;ℝd) under hypotheses which, for example, are satisfied in the case of H
loc
1
(ℝ
d
)-convergence of the ϕ's, but we can allow more singular situations as regards the approximating sequences. We use then these results to give a criterion of convergence for generalized Schrödinger operators in which the potential function should not necessarily exists as a measurable function. We obtain convergence not only in strong resolvent sense, but we also obtain convergence in the uniform operator topology up to sets of arbitrarily small Lebesgue measure. Applications to the problem of the approximation of ordinary Schrödinger operators by generalized ones corresponding to zero-range interactions are given.
Tài liệu tham khảo
Albeverio, S., Blanchard, P., and Ma, Z.M.: Feynman-Kac Semigroups in Terms of Signed Smooth Measures, in: HornungU., KotelenezP., and PapanicolaouG. (eds.), Random Partial Differential Equations, pp. 1–30. Boston: Birkhäuser, 1991.
Albeverio, S., Brasche, J., and Röchner, M.: Dirichlet Forms and Generalized Schrödinger Operators, in: Holden, H. and Jensen, A. (eds.), Proc. Summer School on Schrödinger Operators. Lecture Notes in Physics, Vol. 345, pp. 1–42. Berlin, Heidelberg, New York: Springer, 1989.
Albeverio, S., Gesztesy, F., Høegh-Krohn, R., and Holden, H.: Solvable Models in Quantum Mechanics. Berlin, Heidelberg, New York: Springer, 1988.
Albeverio, S., Høegh-Krohn, R., and Streit, L.: Energy Forms, Hamiltonians, and Distorted Brownian Paths, J. Math. Phys. 18 (1977), 907–917.
Albeverio, S., Høegh-Krohn, R., and Streit, L.: Regularizations of Hamiltonians and Processes, J. Math. Phys. 21 (1980), 1636–1642.
Albeverio, S., Kusuoka, S., and Streit, L.: Convergence of Dirichlet Forms and Associated Schrödinger Operators, J. Funct. Anal. 68 (1986), 130–148.
Albeverio, S., Röckner, M., and Zhang, T.S.: Girsanov Transform for Symmetric Diffusions with Infinite dimensional State Space, Ann. of Prob. 21 (1993), 961–978.
Cioranescu, D. and Murat, F.: Un terme étrange venu d'ailleurs, in: Brezis, H. and Lions, J.L. (eds.), Nonlinear Partial Differential Equations and Their Applications. Research Notes in Mathematics, Vol. 60, pp. 98–138. Boston, London, Melbourne: Pitman, 1982.
Csiszár, I.: Information-type Measures of Difference of Probability Distributions and Indirect Observations, Studia Sci. Math. Hungar. 2 (1967), 299–318.
Dal Maso, G. and Malusa, A.: Approximatons of Relaxed Dirichlet Problems by Boundary Value Problems in Perforated Domains, Proc. Royal Soc. Edinburg 125 (1995), 99–114.
Dellacherie, C. and Meyer, P.A.: Probabilités et Potentiel, Chapitres I a IV. Paris: Hermann, 1975.
Dellacherie, C. and Meyer, P.A.: Probabilités et Potentiel, Chapitres V a VIII. Paris: Hermann, 1980.
Dellacherie, C. and Meyer, P.A.: Probabilités et Potentiel, Chapitres XII a XVI. Paris: Hermann, 1987.
Dell' Antonio, G. and Posilicano, A.: Convergence of Nelson Diffusions, Commun. Math. Phys. 141 (1991), 559–576.
Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. New York: John Wiley, 1990.
Figari, R., Holden, H., and Teta, A.: A Law of Large Number and a Central Limit Theorem for Schrödinger Operators with Zero-Range Potentials, J. Statist. Phys. 51 (1988), 205–214.
Fukushima, M.: On a Stochastic Calculus Related to Dirichlet Forms and Distorted Brownian Motions, Physics Reports 77 (1981), 255–262.
Fukushima, M.: On the Absolute Continuity of Multidimensional Symmetric Diffusion Processes, in: Fukushima, M. (ed.), Functional Analysis in Markov Processes, Lecture Notes in Mathematics Vol. 923, pp. 146–176. Berlin, Heidelberg, New York: Springer, 1982.
Fukushima, M.: Energy Forms and Diffusion Processes, in: Streit, L. (ed.), Mathematics and Physics, Lectures on Recent Results, pp. 65–97 Singapore: World Scientific, 1984.
Jacod, J. and Shiryaev, A.N.: Limit Theorems for Stochastic Processes, Berlin, Heidelberg, New York: Springer, 1987.
Kullback, S.: A Lower Bound for Discrimination Information in Term of Variation, IEEE Trans. Inform. Theory 13 (1967), 126–127.
Lyons, T.J. and Zhang, T.S.: Note on Convergence of Dirichlet Processes, Bull. London Math. Soc. 25 (1993), 353–356.
Posilicano, A.: Capacity Methods in the Study of Convergence of Diffusions, in: Guerra, F., Loffredo, M.I. and Marchioro, C. (eds.), Probabilistic Methods in Mathematical Physics, pp. 374–388. Singapore: World Scientific, 1992.
Reed, M.R. and Simon, B.: Analysis of Operators. New York: Academic Press, 1982.
Röckner, M. and Wielens, N.: Dirichlet Forms—Closability and Change of Speed Measure, in: Albeverio, S. (ed.), Infinite Dimensional Analysis and Stochastic Processes, pp. 119–144. Boston, London, Melbourne: Pitman, 1985.
Röckner, M. and Zhang, T.S.: Uniqueness of Generalized Schrödinger Operators — Part II, J. Funct. Anal. 119 (1994), 455–467.
Simon, B.: Schrödinger Opertors, Bull. AMS 7 (1982), 447–526.
Stroock, D.W. and Varadhan, S.R.S.: Multidimensional Diffusion Processes, Berlin, Heidelberg, New York: Springer, 1979.
Takeda, M.: On a Martingale Method for Symmetric Diffusion Processes and Its Applications, Osaka J. Math. 26 (1989), 605–623.
Takeda, M.: On Donsker-Varadhan's Entropy and Its Applications, Forum Math. 2 (1990), 481–488.
Whitt, W.: Weak Convergence of Probability Measures on the Function Space C[0, +∞), Ann. Math. Stat. 41 (1970), 939–944.
Ziemer, W.P.: Weakly Differentiable Functions, Berlin, Heidelberg, New York: Springer, 1989.