Convergence of an infinite dimensional stochastic process to a spatially structured trait substitution sequence

Springer Science and Business Media LLC - Tập 4 - Trang 791-826 - 2016
Hélène Leman1
1CMAP, Ecole Polytechnique, UMR 7641, Université Paris-Saclay, Palaiseau Cedex, France

Tóm tắt

We consider an individual-based spatially structured population for Darwinian evolution in an asexual population. The individuals move randomly on a bounded continuous space according to a reflected brownian motion. The dynamics involves also a birth rate, a density-dependent logistic death rate and a probability of mutation at each birth event. We study the convergence of the microscopic process in a long time scale when the population size grows to $$+\infty $$ and the mutation probability decreases to 0. We prove the convergence towards a jump process that jumps in the infinite dimensional space containing the monomorphic stable spatial distributions. The proof requires specific studies of the microscopic model. First, we study the extinction time of the branching diffusion processes that approximate small size populations. Then, we examine the upper bound of large deviation principle around the deterministic large population limit of the microscopic process. Finally, we find a lower bound on the exit time of a neighborhood of a stationary spatial distribution.

Tài liệu tham khảo

Arnold, A., Desvillettes, L., Prévost, C.: Existence of nontrivial steady states for populations structured with respect to space and a continuous trait. Commun. Pure Appl. Anal. 11(1), 83–96 (2012) Berestycki, H., Hamel, F., Roques, L.: Analysis of periodically fragmented environment model: I-species persistence. J. Math. Biol. 51, 75–113 (2005) Champagnat, N.: A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch. Process. Appl. 116(8), 1127–1160 (2006) Champagnat, N., Jabin, P.E., Méléard, S.: Adaptation in a stochastic multi-resources chemostat model. Journal de Mathématiques Pures et Appliquées 101(6), 755–788 (2014) Champagnat, N., Méléard, S.: Invasion and adaptative evolution for individual-based spatially structured populations. J. Math. Biol. 55(2), 147–188 (2007) Costa, M., Hauzy, C., Loeuille, N., Méléard S.: Stochastic eco-evolutionary model of a prey-predator community. arXiv preprint arXiv:1407.3069 (2014) Coville, J.: Convergence to equilibrium for positive solutions of some mutation-selection model. arXiv preprint arXiv:1308.6471 (2013) Dawson, D., Gartner, J.: Large deviations from the Mc-Kean–Vlasov limit for weakly interacting diffusions. Stochastics 20, 247–308 (1987) Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability. Springer, Berlin (1998) Desvillettes, L., Ferriére, R., Prévost, C.: Infinite dimensional reaction-diffusion for population dynamics. Preprint 4(3), 529–605 (2004) Doebeli, M., Dieckmann, U.: Speciation along environmental gradients. Nature 421, 259–263 (2003) Durrett, R., Levin, S.: Spatial aspects of interspecific competition. Theor. Popul. Biol. 53(1), 30–43 (1998) Endler, J.A.: Geographic Variation, Speciation, and Clines, vol. 2. Princeton University Press, Princeton (1977) Fontbona, J.: Uniqueness for a weak nonlinear evolution equation and large deviations for diffusing particles with electrostatic repulsion. Stoch. Process. Appl. 112(1), 119–144 (2004) Freidlin, M., Wentzell, A.: Random Perturbations. Springer, Berlin (1984) Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964) Futuyma, D., Moreno, G.: The evolution of ecological specialization. Ann. Rev. Ecol. Syst. 19, 207–233 (1988) Graham, C., Méléard, S.: An upper bound of large deviations for a generalized star-shaped loss network. Markov Process. Relat. Fields 3(2), 199–224 (1997) Grant, P., Grant, B.: Unpredictable evolution in a 30-year study of darwin’s finches. Science 296, 707–711 (2002) Hastings, A.: Dynamics of a single species in a spatially varying environment: the stabilizing role of high dispersal rates. J. Math. Biol. 16(1), 49–55 (1982) Hastings, A.: Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol. 24(3), 244–251 (1983) Johnson, M., Gaines, M.: Evolution of dispersal: theoretical models and empirical tests using birds and mammals. Annu. Rev. Ecolo. Syst. 21, 449–480 (1990) Kassen, R.: The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15, 173–190 (2002) Leimar, O., Doebeli, M., Dieckmann, U.: Evolution of phenotypic clusters through competition and local adaptation along an environmental gradient. Evolution 62(4), 807–822 (2008) Leman, H., Méléard, S., Mirrahimi, S.: Influence of a spatial structure on the long time behavior of a competitive Lotka–Volterra type system. Discret. Contin. Dyn. Syst. Ser. B 20, 469–493 (2015) Leonard, C.: Large deviations for long range interacting particle systems with jumps. Annales de l’IHP Probabilités et statistiques 31, 289–323 (1995a) Léonard, C.: On large deviations for particle systems associated with spatially homogeneous boltzmann type equations. Probab. Theory Relat. Fields 101(1), 1–44 (1995b) Léonard, C.: Convex conjugates of integral functionals. Acta Math. Hungar. 93(4), 253–280 (2001a) Léonard, C.: Minimizers of energy functionals. Acta Math. Hungar. 93(4), 281–325 (2001b) Metz, J.A.J., Geritz, S., Meszéna, G., Jacobs, F., Van Heerwaarden, J.S.: Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. Stoch. Spat. Struct. Dyn. Syst. 45, 183–231 (1996) Perthame, B., Souganidis, P.: Rare mutations limit of a steady state dispersion trait model. arXiv preprint arXiv:1505.03420 (2015) Polechová, J., Barton, N.H.: Speciation through competition: a critical review. Evolution 59(6), 1194–1210 (2005) Rao, M.M., Ren, Z.D.: Applications of Orlicz Spaces, vol. 250. CRC Press, New York (2002) Roques, L.: Modéles de réaction-diffusion pour l’écologie spatiale. Editions Quae (2013) Tilman, D., Kareiva, P.M.: Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions, vol. 30. Princeton University Press, Princeton (1997) Tran, V.: Large population limit and time behaviour of a stochastic particle model describing an age-structured population. ESAIM 12, 345–386 (2008) Wang, F., Yan, L.: Gradient estimate on convex domains and applications. Proc. Am. Math. Soc. 141(3), 1067–1081 (2013)