Convergence for Slow Discrete Dynamical Systems with Identity Linearization
Tóm tắt
In this work we give sufficient and necessary conditions for convergence for nonhyperbolic fixed points of dynamical systems of arbitrary dimension whose linearization around zero is the identity function. To achieve this goal, we first rewrite the dynamical system in terms of spherical polar coordinates and by approximation of the radial iteration function we discover a necessary condition depending on a remarkable angular function. Searching for conditions that are sufficient, we discover more angular functions that together with the first one gives a complete set that plays the role of the iteration derivative for unidimensional discrete systems.
Tài liệu tham khảo
De La Parra, R.B., Marvá, M., Sánchez, E., Sanz, L.: Reduction of discrete dynamical systems with applications to dynamics population models. Math. Model. Nat. Phenom. 8(6), 107–129 (2013)
Solis, F.J., Gonzalez, L.M.: Modeling the effects of human papilloma virus in cervical cells. Int. J. Comput. Math. 91, 1–9 (2013). https://doi.org/10.1080/00207160.2013.770843
Werbos, P.J.: 3-Brain architecture for an intelligent decision and control system. US Patent No. 6,169,981, 2001
Zhang, L., Mykland, P.A., Aït-Sahalia, Y.: A tale of two time scales. J. Am. Stat. Assoc. 100, 1394–1411 (2012)
Givon, D., Kupferman, R.: White noise limits for discrete dynamical systems driven by fast deterministic dynamics. Phys. A Stat. Mech. Appl. 335(3–4), 385–412 (2004)
Pavlov, A., van de Wouw, N.: Convergent discrete-time nonlinear systems: the case of PWA systems. In: American Control Conference, IEEE pp. 3452–3457 (2008)
Sanz, L., Bravo de la Parra, R., Sánchez, E.: Approximate reduction of non-linear discrete models with two time scales. J. Differ. Equ. Appl. 14(6), 607–627 (2008)
Singer, A., Erban, R., Kevrekidis, I.G., Coifman, R.R.: Detecting intrinsic slow variables in stochastic dynamical systems by anisotropic diffusion maps. Proc. Natl. Acad. Sci. 106(38), 16090–16095 (2009)
Solis, F., Chen, B., Kojouharov, H.: A classification of slow convergence near parametric periodic points of discrete dynamical systems. Int. J. Comput. Math. 93, 1011–1021 (2015). https://doi.org/10.1080/00207160.2015.1015528
Solis, F., Chen, B., Kojouharov, H.: Multidimensional Discrete Dynamical Systems with Slow behavior. Differential Equations and Dynamical Systems, pp. 1–12. Springer, New York (2017). https://doi.org/10.1007/s12591-017-0388-0
Solis, F., Sotolongo, A.: Convergence on Two Dimensional 1-Slow Discrete Dynamical Systems. Differential Equations and Dynamical Systems, pp. 1–15. Springer, New York (2016). https://doi.org/10.1007/s12591-016-0330-x
Solis, F., Sotolongo, A.: On the Unresolved Cases of Convergence of Bidimensional Slow Discrete Dynamical Systems. Differential Equations and Dynamical Systems, pp. 1–23. Springer, New York (2017). https://doi.org/10.1007/s12591-017-0353-y