Convergence factors of Newton methods for nonlinear eigenvalue problems

Linear Algebra and Its Applications - Tập 436 - Trang 3943-3953 - 2012
Elias Jarlebring1
1Department of Computer Science, K.U. Leuven, Celestijnenlaan 200 A, 3001 Leuven-Heverlee, Belgium

Tài liệu tham khảo

Anselone, 1968, The solution of characteristic value-vector problems by Newton’s method, Numer. Math., 11, 38, 10.1007/BF02165469 T. Betcke, N.J. Higham, V. Mehrmann, C. Schröder, F. Tisseur, NLEVP: a collection of nonlinear eigenvalue problems, Tech. Rep., Manchester Institute for Mathematical Sciences, 2008. Betcke, 2004, A Jacobi–Davidson type projection method for nonlinear eigenvalue problems, Future Gener. Comput. Systems, 20, 363, 10.1016/j.future.2003.07.003 Engelborghs, 2002, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Software, 28, 1, 10.1145/513001.513002 Freitag, 2007, Convergence of inexact inverse iteration with application to preconditioned iterative solves, BIT, 47, 27, 10.1007/s10543-006-0100-1 Gohberg, 1982 Hryniv, 1999, On the perturbation of analytic matrix functions, Integral Equations Operator Theory, 34, 325, 10.1007/BF01300582 Ipsen, 1997, Computing an eigenvector with inverse iteration, SIAM Rev., 39, 254, 10.1137/S0036144596300773 Jain, 1983, On Kublanovskaya’s approach to the solution of the generalized latent value problem for functional lambda-matrices, SIAM J. Numer. Anal., 20, 1062, 10.1137/0720075 E. Jarlebring, The spectrum of delay-differential equations: numerical methods, stability and perturbation, Ph.D. Thesis, TU Braunschweig, 2008. Jarlebring, 2010, Invariance properties in the root sensitivity of time-delay systems with double imaginary roots, Automatica, 46, 1112, 10.1016/j.automatica.2010.03.014 Kressner, 2009, A block Newton method for nonlinear eigenvalue problems, Numer. Math., 114, 355, 10.1007/s00211-009-0259-x Kublanovskaya, 1970, On an approach to the solution of the generalized latent value problem for λ-matrices, SIAM J. Numer. Anal., 7, 532, 10.1137/0707043 Lancaster, 1961, A generalized Rayleigh quotient iteration for lambda-matrices, Arch. Ration. Mech. Anal., 8, 309, 10.1007/BF00277446 Lancaster, 2002 Li, 1992, Compute multiply nonlinear eigenvalues, J. Comput. Math., 10, 1 Mehrmann, 2004, Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods, GAMM Mitt., 27, 121, 10.1002/gamm.201490007 Michiels, 2007, Stability and stabilization of time-delay systems: an eigenvalue-based approach, vol. 12 Neumaier, 1985, Residual inverse iteration for the nonlinear eigenvalue problem, SIAM J. Numer. Anal., 22, 914, 10.1137/0722055 J. Ortega, W. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, SIAM, 2000, ISBN: 0-89871-461-3. Ostrowski, 1959, On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors. I, II, Arch. Ration. Mech. Anal., 1, 233, 10.1007/BF00298007 Peters, 1979, Inverse iterations, ill-conditioned equations and Newton’s method, SIAM Rev., 21, 339, 10.1137/1021052 Rall, 1974, A note on the convergence of Newton’s method, SIAM J. Numer. Anal., 11, 34, 10.1137/0711004 Ruhe, 1973, Algorithms for the nonlinear eigenvalue problem, SIAM J. Numer. Anal., 10, 674, 10.1137/0710059 K. Schreiber, Nonlinear eigenvalue problems: Newton-type methods and nonlinear Rayleigh functionals, Ph.D. Thesis, TU Berlin, 2008. Schröder, 1957, Über das Newtonsche Verfahren, Arch. Ration. Mech. Anal., 1, 154, 10.1007/BF00298003 H. Schwetlick, K. Schreiber, A primal–dual Jacobi–Davidson-like method for nonlinear eigenvalue problems, Tech. Rep. ZIH-IR-0613, Techn. Univ. Dresden, Zentrum für Informationsdienste und Hochleistungsrechnen, 2006, pp. 1–20. Sleijpen, 1996, Jacobi–Davidson type methods for generalized eigenproblems and polynomial eigenproblems, BIT, 36, 595, 10.1007/BF01731936 Tisseur, 2001, The quadratic eigenvalue problem, SIAM Rev., 43, 235, 10.1137/S0036144500381988 Unger, 1950, Nichtlineare Behandlung von Eigenwertaufgaben, Z. Angew. Math. Mech., 30, 281, 10.1002/zamm.19500300839 H. Voss, Numerical methods for sparse nonlinear eigenvalue problems, in: Proceedings of the XVth Summer School on Software and Algorithms of Numerical Mathematics, Hejnice, Czech Republic, 2004, Report 70, Arbeitsbereich Mathematik, TU Hamburg–Harburg. Yang, 1983, A method for eigenvalues of sparse lambda-matrices, Int. J. Numer. Methods Eng., 19, 943, 10.1002/nme.1620190613