Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs

Albert Cohen1, Ronald A. DeVore2, Christoph Schwab3
1Laboratoire Jacques-Louis Lions, UMR 7598, UPMC Univ. Paris 06, 75005, Paris, France
2Department of Mathematics, Texas A&M University, College Station, USA
3Seminar for Applied Mathematics, ETH Zürich, Zürich, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

I. Babuška, R. Tempone, G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal. 42, 800–825 (2004).

I. Babuška, F. Nobile, R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal. 45, 1005–1034 (2007).

P.G. Ciarlet, The Finite Element Methods for Elliptic Problems (Elsevier, Amsterdam, 1978).

A. Cohen, Numerical Analysis of Wavelet Methods (Elsevier, Amsterdam, 2003).

A. Cohen, W. Dahmen, R. DeVore, Adaptive wavelet methods for elliptic operator equations—convergence rates, Math. Comput. 70, 27–75 (2001).

A. Cohen, R. DeVore, C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s, Anal. Appl. (2010, to appear).

R. DeVore, Nonlinear approximation, Acta Numer. 7, 51–150 (1998).

T. Gantumur, H. Harbecht, R. Stevenson, An adaptive wavelet method without coarsening of the iterands, Math. Comput. 76, 615–629 (2007).

R. Ghanem, P. Spanos, Spectral techniques for stochastic finite elements, Arch. Comput. Methods Eng. 4, 63–100 (1997).

G.E. Karniadakis, D.B. Xiu, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput. 24, 619–644 (2002).

M. Kleiber, T.D. Hien, The Stochastic Finite Element Methods (Wiley, New York, 1992).

M. Ledoux, M. Talagrand, Probability in Banachspaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 23 (Verlag, Berlin, 1991).

F. Nobile, R. Tempone, C.G. Webster, A sparse grid stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal. 46, 2309–2345 (2008).

F. Nobile, R. Tempone, C.G. Webster, An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal. 46, 2411–2442 (2008).

G. Rozza, D.B.P. Huynh, A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations and application to transport and continuum mechanics, Arch. Comput. Methods Eng. 15, 229–275 (2008).

W. Schoutens, Stochastic Processes and Orthogonal Polynomials. Lecture Notes in Statistics, vol. 146 (Springer, New York, 2000).

C. Schwab, R. Todor, Karhúnen–Loève approximation of random fields by generalized fast multipole methods, J. Comput. Phys. 217, 100–122 (2006).

S.A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk SSSR 4, 240–243 (1963).

R. Todor, Robust eigenvalue computation for smoothing operators, SIAM J. Numer. Anal. 44, 865–878 (2006).

R. Todor, C. Schwab, Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients, IMA J. Numer. Anal. 45, 232–261 (2007).

T. von Petersdorff, C. Schwab, Sparse finite element methods for operator equations with stochastic data, Appl. Math. 51, 145–180 (2006).

N. Wiener, The homogeneous chaos, Am. J. Math. 60, 897–936 (1938).