Convergence Rate of a Modified Extragradient Method for Pseudomonotone Variational Inequalities

Vietnam Journal of Mathematics - Tập 45 Số 3 - Trang 397-408 - 2017
Pham Duy Khanh1
1Department of Mathematics, Ho Chi Minh City University of Pedagogy, 280 An Duong Vuong, Ho Chi Minh, Vietnam

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anh, P.N., Muu, L.D., Nguyen, V.H., Strodiot, J.J.: Using the Banach contraction principle to implement the proximal point method for multivalued monotone variational inequalities. J. Optim. Theory Appl. 124, 285–306 (2005).

Gafni, E.M., Bertsekas, D.P.: Two-metric projection methods for constrained optimization. SIAM J. Control Optim. 22, 936–964 (1984).

Gafni, E.M., Bertsekas, D.P.: Two-metric projection problems and descent methods for asymmetric variational inequality problems. Math. Program. 53, 99–110 (1984).

Huy, N.Q., Yen, N.D.: Minimax variational inequalities. Acta Math. Vietnam. 36, 265–281 (2011).

Karamardian, S., Schaible, S.: Seven kinds of monotone maps. J. Optim. Theory Appl. 66, 37–46 (1990).

Khanh, P.D., Vuong, P.T.: Modified projection method for strongly pseudomonotone variational inequalities. J. Glob. Optim. 58, 341–350 (2014).

Khanh, P.D.: A modified extragradient method for infinite-dimensional variational inequalities. Acta Math. Vietnam. (2015). doi: 10.1007/s40306-015-0150-z .

Kim, D.S., Vuong, P.T., Khanh, P.D.: Qualitative properties of strongly pseudomonotone variational inequalities. Optim. Lett. (2015). doi: 10.1007/s11590-015-0960-x .

Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980).

Korpelevich, G.M.: An extragradient method for finding saddle points and for other problems. Ekon. Mat. Metod. 12, 747–756 (1976).

Muu, L.D., Quoc, T.D.: Regularization algorithms for solving monotone Ky Fan inequalities with application to a Nash-Cournot equilibrium model. J. Optim. Theory Appl. 142, 185–204 (2009).

Muu, L.D., Quy, N.V.: On existence and solution methods for strongly pseudomonotone equilibrium problems. Vietnam J. Math. 43, 229–238 (2015).

Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970).

Tseng, P.: On linear convergence of iterative methods for the variational inequality problem. J. Comput. Appl. Math. 60, 237–252 (1995).