Convergence Behavior of High-Resolution Finite Element Models of Trabecular Bone
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ashman R. B. , and RhoJ. Y., 1988, “Elastic modulus of trabecular bone material,” Journal of Biomechanics, Vol. 21, pp. 177–781.
Beck J. D. , CanfieldB. L., HaddockS. M., ChenT. J. H., KothariM., and KeavenyT. M., 1997, “Three-dimensional imaging of trabecular bone using the Computer Numerically Controlled Milling technique,” Bone, Vol. 21, pp. 281–287.
Fenech C. , and KeavenyT. M., 1999, “A cellular solid criterion for predicting the axial-shear failure properties of trabecular bone,” ASME JOURNAL OF BIOMECHANICAL ENGINEERING, Vol. 121, pp. 414–422.
Goulet R. W. , GoldsteinS. A., CiarelliM. J., KuhnJ. L., BrownM. B., and FeldkampL. A., 1994, “The relationship between the structural and orthogonal compressive properties of trabecular bone,” Journal of Biomechanics, Vol. 27, pp. 375–389.
Guldberg R. E. , HollisterS. J., and CharrasG. T., 1998, “The accuracy of digital image-based finite element models,” ASME JOURNAL OF BIOMECHANICAL ENGINEERING, Vol. 120, pp. 289–295.
Hollister S. J. , BrennanJ. M., and KikuchiN., 1994, “A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress,” Journal of Biomechanics, Vol. 27, pp. 433–444.
Hughes T. , FerenczR., and HallquistJ., 1987, “Large-scale vectorized implicit calculation in solid mechanics on a Cray X-MP/48 utilizing EBE preconditioned conjugate gradients,” Computer Methods in Applied Mechanics and Engineering, Vol. 61, pp. 215–248.
Jacobs, C. R., Mandell, J. A., and Beaupre, G. S., 1993, “A comparative study of automatic finite element mesh generation techniques in Orthopaedic biomechanics,” Proc. ASME Bioengineering Division, ASME BED-Vol. 24, pp. 512–514.
Jacobs, C. R., Davis, B. R., Rieger, C. J., Francis, J. J., Saad, M., and Fyhrie, D. P., 1999, “The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large scale finite element modeling,” Journal of Biomechanics, Vol. 32.
Keaveny T. M. , 1997, “Mechanistic approaches to analysis of trabecular bone,” Forma, Vol. 12, pp. 267–275.
Keyak J. H. , MeagherJ. M., SkinnerH. B., and MoteC. D., 1990, “Automated three-dimensional finite element modelling of bone: a new method,” Journal of Biomedical Engineering, Vol. 12, pp. 389–397.
Keyak J. H. , and SkinnerH. B., 1992, “Three-Dimensional finite element modelling of bone — effects of element size,” Journal of Biomedical Engineering, Vol. 14, pp. 483–489.
Kinney J. H. , and LaddA. J., 1998, “The relationship between three-dimensional connectivity and the elastic properties of trabecular bone,” Journal of Bone and Mineral Research, Vol. 13, pp. 839–845.
Kopperdahl D. L. , and KeavenyT. M., 1998, “Yield strain behavior of trabecular bone,” Journal of Biomechanics, Vol. 31, pp. 601–608.
Kothari M. , KeavenyT. M., LinJ. C., NewittD. C., GenantH. K., and MajumdarS., 1998, “Impact of spatial resolution on the prediction of trabecular architecture parameters,” Bone, Vol. 22, pp. 437–443.
Ladd A. J. C. , and KinneyJ. H., 1997, “Elastic constants of cellular structures,” Physica A, Vol. 240, pp. 349–360.
Ladd A. J. C. , KinneyJ. H., and BreunigT. M., 1997, “Deformation and failure in cellular materials,” Physical Review E, Vol. 55, pp. 3271–3275.
Ladd A. J. , and KinneyJ. H., 1998, “Numerical errors and uncertainties in finite-element modeling of trabecular bone,” Journal of Biomechanics, Vol. 31, pp. 941–945.
Ladd A. J. , KinneyJ. H., HauptD. L., and GoldsteinS. A., 1998, “Finite-element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus,” Journal of Orthopædic Research, Vol. 16, pp. 622–628.
Odgaard A. , KabelJ., an RietbergenB., DalstraM., and HuiskesR., 1997, “Fabric and elastic principal directions of cancellous bone are closely related,” Journal of Biomechanics, Vol. 30, pp. 487–495.
Rice J. C. , CowinS. C., and BowmanJ. A., 1988, “On the dependence of the elasticity and strength of cancellous bone on apparent density,” Journal of Biomechanics, Vol. 21, pp. 155–168.
Simmons C. A. , and HippJ. A., 1997, “Method-based differences in the automated analysis of the three-dimensional morphology of trabecular bone,” Journal of Bone and Mineral Research, Vol. 12, pp. 942–947.
Taylor R. L. , and WilsonE. L., 1976, “A non-conforming element for stress analysis,” International Journal for Numerical Methods in Engineering, Vol. 10, pp. 1211–1219.
Ulrich D. , HildebrandT., Van RietbergenB., Mu¨llerR., and RuegseggerP., 1997, “The quality of trabecular bone evaluated with micro-computed tomography, FEA and mechanical testing,” Stud Health Technol Inform, Vol. 40, pp. 97–112.
Ulrich D. , Van RietbergenB., WeinansH., and RuegseggerP., 1998, “Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques,” Journal of Biomechanics, Vol. 31, pp. 1187–1192.
Van Rietbergen B. , WeinansH., HuiskesR., and OdgaardA., 1995, “A new method to determine trabecular bone elastic properties and loading using micromechanical finite element models,” Journal of Biomechanics, Vol. 28, pp. 69–81.
Van Rietbergen B. , OdgaardA., KabelJ., and HuiskesR., 1996a, “Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture,” Journal of Biomechanics, Vol. 29, pp. 1653–1657.
Van Rietbergen B. , WeinansH., HuiskesR., and PolmanB. J. W., 1996b, “Computational strategies for iterative solutions of large FEM applications employing voxel data,” International Journal for Numerical Methods in Engineering, Vol. 39, pp. 2743–2767.
Van Rietbergen B. , OdgaardA., KabelJ., and HuiskesR., 1998, “Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions,” Journal of Orthopædic Research, Vol. 16, pp. 23–28.
