Convergence Approach Spaces : Actions
Tóm tắt
Properties of continuous actions and pseudoquotients are studied in the category of convergence approach spaces. Invariance properties of continuous actions on convergence approach spaces are given. It is shown that the formation of pseudoquotient spaces is idempotent. Function space actions are also investigated.
Tài liệu tham khảo
Boustique, H., Mikusiński, P., Richardson, G.: Convergence semigroup categories. Appl. Gen. Top. 11, 67–88 (2010)
Brock, P., Kent, D.: Approach spaces, limit tower spaces, and probabilistic convergence spaces. Appl. Categ. Struct. 5, 99–110 (1997)
Burzyk, J., Ferens, C., Mikusiński, P.: On the topology of generalized quotients. Appl. Gen. Top 9, 205–212 (2008)
Colebunders, E., Mynard, F., Trott, W.: Function spaces and contractive extensions in approach theory : the role of regularity. Appl. Categ. Struct. 22, 551–563 (2014)
De Graaf, J., Elst, A.F.M.: An algebraic approach to distribution theories Proceedings of the international conference on Generalized Functions, Convergence Structures, and Their Applications, Dubrovnik (1987), pp 171–177. Plenum Press, New York (1988)
Katsevich, A., Mikusiński, P.: On De Graaf spaces of pseudoquotients, Rocky Mtn. J. Math. (to appear)
Lowen, E., Lowen, R.: A quasi topos containing CONV and MET as full subcategories. Internat. J. Math. and Math. Sci 11, 417–438 (1988)
Lowen, R.: Approach spaces: the missing link in topology-uniformity-metric triad. OxfordMathematical Monographs, Oxford University Press (1997)
Lowen, R., Windels, B.: Approach groups. Rocky Mtn. J. Math 30, 1057–1073 (2000)
Mikusiński, P.: Boehmians and generalized functions. Acta. Math. Hungar. 51, 271–281 (1988)
Mikusiński, P.: Generalized quotients with applications in analysis. Methods Appl. Anal 10, 377–386 (2003)
Mikusiński, P., Purtee, S.: Connectedness in spaces of pseudoquotients. Topol. Proc. 40, 283–288 (2012)
Park, W.: Convergence structures on homeomorphism groups. Math. Ann 199, 45–54 (1972)
Rath, N.: Action of convergence groups. Topol. Proc. 27, 601–612 (2003)