Convergence Analysis of Extended Hummel–Seebeck-Type Method for Solving Variational Inclusions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aubin, J.P.: Lipschitz behavior of solutions to convex minimization problems. Math. Oper. Res. 9, 87–111 (1984)
Aubin, J.P., Frankowska, H.: Set-valued Analysis. Birkhäuser, Boston (1990)
Dontchev, A.L., Hager, W.W.: An inverse mapping theorem for set-valued maps. Proc. Am. Math. Soc. 121, 481–489 (1994)
Dontchev, A.L.: Local convergence of the Newton method for generalized equations. C.R.A.S. Paris Ser. I 322, 327–331 (1996)
Dontchev, A.L.: Uniform convergence of the Newton method for Aubin continuous maps. Serdica Math. J. 22, 385–398 (1996)
Dontchev, A.L.: Local analysis of a Newton-type method based on partial linearization. Lect. Appl. Math. 32, 295–306 (1996)
Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)
Geoffroy, M.H., Hilout, S., Piétrus, A.: Acceleration of convergence in Dontchev’s iterative method for solving variational inclusions. Serdica Math. J. 29, 45–54 (2003)
Geoffroy, M.H., Piétrus, A.: A superquadratic method for solving generalized equations in the Hölder case. Ric. Mat. LII, 231–240 (2003)
Geoffroy, M.H., Jean-Alexis, C., Piétrus, A.: A Hummel–Seebeck type method for variational inclusions. Optim. 58, 389–399 (2009)
He, J.S., Wang, J.H., Li, C.: Newton’s method for underdetemined systems of equations under the γ-condition. Numer. Funct. Anal. Optim. 28, 663–679 (2007)
Hummel, P.M., Seebeck, C.L.: A generalization of Taylor’s expansion. Am. Math. Mon. 56, 243–247 (1949)
Jean-Alexis, C., Piétrus, A.: A cubic method without second order derivative for solving variational inclusions. C.R. Acad. Bulg. Sci. 59, 1213–1218 (2006)
Jean-Alexis, C., Piétrus, A.: Superquadratic convergence of a Hummel–Seebeck type method. Rev. Colomb. Mat. 43, 1–8 (2009)
Li, C., Zhang, W.H., Jin, X.Q.: Convergence and uniqueness properties of Gauss–Newton’s method. Comput. Math. Appl. 47, 1057–1067 (2004)
Piétrus, A.: Generalized equations under mild differentiability conditions. Rev. R. Acad. Cienc. Exact. Fis. Nat. 94, 15–18 (2000)
Piétrus, A.: Does Newton’s method for set-valued maps converges uniformly in mild differentiability context?. Rev. Colomb. Mat. 34, 49–56 (2000)
Rashid, M.H., Yu, S.H., Li, C., Wu, S.Y.: Convergence analysis of the Gauss–Newton-type method for Lipschitz-like mappings. J. Optim. Theory Appl. 158, 216–233 (2013)
Robinson, S.M.: Generalized equations and their solutions, part I: basic theory. Math. Progam. Stud. 10, 128–141 (1979)
Robinson, S.M.: Generalized equations and their solutions, part II: applications to nonlinear programming. Math. Program. Stud. 19, 200–221 (1982)
Xu, X.B., Li, C.: Convergence of Newton’s method for systems of equations with constant rank derivatives. J. Comput. Math. 25, 705–718 (2007)