Controlling time scales for electron transfer through proteins
Tài liệu tham khảo
Beratan, 1991, Protein electron-transfer rates set by the bridging secondary and tertiary structure, Science, 252, 1285, 10.1126/science.1656523
Beratan, 1992, Electron-tunneling pathways in proteins, Science, 258, 1740, 10.1126/science.1334572
Beratan, 2009, Steering electrons on moving pathways, Acc. Chem. Res., 42, 1669, 10.1021/ar900123t
de Jongh, 2007, Inter- and intramolecular electron transfer in modified azurin dimers, Eur. J. Inorg. Chem., 18, 2627, 10.1002/ejic.200601234
DiBilio, 1997, Reorganization energy of blue copper: effects of temperature and driving force on the rates of electron transfer in ruthenium- and osmium-modified azurins, J. A. Chem. Soc., 119, 9921, 10.1021/ja971518e
Farver, 1989, Long-range intramolecular electron-transfer in azurins, Proc. Natl. Acad. Sci. U. S. A., 86, 6968, 10.1073/pnas.86.18.6968
Farver, 1992, Long-range intramolecular electron-transfer in azurins, J. Am. Chem. Soc., 114, 5764, 10.1021/ja00040a043
Farver, 1992, Low activation barriers characterize intramolecular electron transfer in ascorbate oxidase, Proc. Natl. Acad. Sci. U.S.A., 89, 8283, 10.1073/pnas.89.17.8283
Farver, 1992, The effect of driving force on intramolecular electron-transfer in proteins – studies on single-site mutated azurins, Eur. J. Biochem., 210, 399, 10.1111/j.1432-1033.1992.tb17434.x
Farver, 1993, Intramolecular electron-transfer in single-site-mutated azurins, Biochemistry, 32, 7317, 10.1021/bi00079a031
Farver, 1996, Structure-function correlation of intramolecular electron transfer in wild type and single-site mutated azurins, Chem. Phys., 204, 271, 10.1016/0301-0104(95)00294-4
Farver, 1996, The pH dependence of intramolecular electron transfer in azurins, Inorg. Chim. Acta, 243, 127, 10.1016/0020-1693(95)04899-5
Farver, 1997, Aromatic residues may enhance intramolecular electron transfer in azurin, J. Am. Chem. Soc., 119, 5453, 10.1021/ja964386i
Farver, 1998, The intramolecular electron transfer between copper sites of nitrite reductase: a comparison with ascorbate oxidase, FEBS Lett., 436, 239, 10.1016/S0014-5793(98)01120-X
Farver, 1999, Enhanced rate of intramolecular electron transfer in an engineered purple CuA azurin, Proc. Natl. Acad. Sci. U. S. A., 96, 899, 10.1073/pnas.96.3.899
Farver, 2000, Role of ligand substitution on long-range electron transfer in azurins, Eur. J. Biochem., 267, 3123, 10.1046/j.1432-1327.2000.01317.x
Farver, 2000, Electron transfer rates and equilibrium within cytochrome c oxidase, Eur. J. Biochem., 267, 950, 10.1046/j.1432-1327.2000.01072.x
Farver, 2002, Intramolecular electron transfer in cytochrome cd1 nitrite reductase from Pseudomonas stutzeri; kinetics and thermodynamics, Biophys. Chem., 98, 27, 10.1016/S0301-4622(02)00082-0
Farver, 2003, Intramolecular electron transfer in a covalently linked mutated azurin dimer, J. Phys. Chem. A, 107, 6757, 10.1021/jp0357018
Farver, 2004, Met144a1a mutation of the copper-containing nitrite reductase from Alcaligenes xylosoxidans reverses the intramolecular electron transfer, FEBS Lett., 561, 173, 10.1016/S0014-5793(04)00171-1
Farver, 2004, Reorganization energies of the individual copper centers in dissimilatory nitrite reductases: modulation and control of internal electron transfer, J. Phys. Chem. A, 108, 9005, 10.1021/jp046206u
Farver, 2006, Rates and equilibrium of CuA to heme a electron transfer in Paracoccus denitrificans cytochrome c oxidase, Biophys. J., 90, 2131, 10.1529/biophysj.105.075440
Farver, 2006, Electron transfer among the CuA, heme b- and a3-centers of Thermus thermophilus cytochrome ba3, FEBS Lett., 580, 3417, 10.1016/j.febslet.2006.05.013
Farver, 2007, Reorganization energy of the CuA center in purple azurin: impact of the mixed valence-to-trapped valence state transition, J. Phys. Chem. B, 111, 6690, 10.1021/jp0672555
Farver, 2009, Site-site interactions enhances intramolecular electron transfer in Streptomyces coelicolor laccase, J. Am. Chem. Soc., 131, 18226, 10.1021/ja908793d
Farver, 2011, Intramolecular electron transfer in laccases, FEBS J., 278, 3463, 10.1111/j.1742-4658.2011.08268.x
Farver, 2011, Electron transfer in blue copper proteins, Coord. Chem. Rev., 255, 757, 10.1016/j.ccr.2010.08.005
Farver, 2013, Designed azurins show lower reorganization free energies for intraprotein electron transfer, Proc. Natl. Acad. Sci. U. S. A., 110, 10536, 10.1073/pnas.1215081110
Farver, 2015, Long-range electron transfer in engineered azurins exhibits Marcus inverted region behavior, J. Phys. Chem. Lett., 6, 100, 10.1021/jz5022685
Goldberg, 1978, The reaction of “blue” copper oxidases with 02. A pulse radiolysis study, Biophys. J., 24, 371, 10.1016/S0006-3495(78)85384-3
Hart, 1970
Klapper, 1979, Applications of pulse-radiolysis to protein chemistry, Q. Rev. Biophys., 12, 465, 10.1017/S0033583500002791
Kobayashi, 1997, Pulse radiolysis studies on cytochrome cd nitrite reductase from Thiosphaera pantotropha: evidence for a fast intramolecular electron transfer from c-heme to d(1)-heme, Biochemistry, 36, 13611, 10.1021/bi971045o
Komori, 2009, X-ray structure of a two-domain type laccase: a missing link in the evolution of multi-copper proteins, FEBS Lett., 583, 1189, 10.1016/j.febslet.2009.03.008
Lawton, 2009, Crystal structure of a two-domain multicopper oxidase implications for the evolution of multicopper blue proteins, J. Biol. Chem., 284, 10174, 10.1074/jbc.M900179200
Malkin, 1970, The State and function of copper in biological systems, 33, 177
Marcus, 1985, Electron transfers in chemistry and biology, Biochim. Biophys. Acta, 811, 265, 10.1016/0304-4173(85)90014-X
Messerschmidt, 1989, X-ray crystal structure of the blue oxidase ascorbate oxidase from zucchini – analysis of the polypeptide fold and a model of the copper sites and ligands, J. Mol. Biol., 206, 513, 10.1016/0022-2836(89)90498-1
Messerschmidt, 1992, Refined crystal-structure of ascorbate oxidase at 1.9 angstrom resolution, J. Mol. Biol., 224, 179, 10.1016/0022-2836(92)90583-6
Messerschmidt, 1993, X-ray structures and mechanistic implications of 3 functional-derivatives of ascorbate oxidase from zucchini – reduced, peroxide and azide forms, J. Mol. Biol., 230, 997, 10.1006/jmbi.1993.1215
Meyer, 1991, Direct measurement of intramolecular electron-transfer between type-I and type-III copper centers in the multi-copper enzyme ascorbate oxidase and its type-II copper-depleted and cyanide-inhibited forms, Biochemistry, 30, 4619, 10.1021/bi00232a037
Nakamura, 2003, Novel types of two-domain multi-copper oxidases: possible missing links in the evolution, FEBS Lett., 553, 239, 10.1016/S0014-5793(03)01000-7
Nar, 1991, Crystal-structure analysis of oxidized Pseudomonas aeruginosa azurin at pH 5.5 and pH 9.0 – a pH-induced conformational transition involves a peptide-bond flip, J. Mol. Biol., 221, 765, 10.1016/0022-2836(91)80173-R
Polyakov, 2009, Structure of native laccase from Trametes hirsuta at 1.8 angstrom resolution, Acta Crystallogr., Sect. D: Biol. Crystallogr., 65, 611, 10.1107/S0907444909011950
Skalova, 2011, Structure of laccase from Streptomyces coelicolor after soaking with potassium hexacyanoferrate and at an improved resolution of 2.3 angstrom, Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun., 67, 27, 10.1107/S1744309110046099
Suzuki, 1994, Pulse-radiolysis studies on nitrite reductase from Achromobacter cycloclastes iam-1013 – evidence for intramolecular electron-transfer from type-1 cu to type-2 cu, J. Am. Chem. Soc., 116, 11145, 10.1021/ja00103a035
Wherland, 2005, Intramolecular electron transfer in nitrite reductases, ChemPhysChem, 6, 1440, 10.1002/cphc.200590018
