Controlling time scales for electron transfer through proteins

Perspectives in Science - Tập 6 - Trang 94-105 - 2015
Scot Wherland1, Israel Pecht2
1Department of Chemistry, Washington State University, Pullman, WA, USA
2Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel

Tài liệu tham khảo

Beratan, 1991, Protein electron-transfer rates set by the bridging secondary and tertiary structure, Science, 252, 1285, 10.1126/science.1656523 Beratan, 1992, Electron-tunneling pathways in proteins, Science, 258, 1740, 10.1126/science.1334572 Beratan, 2009, Steering electrons on moving pathways, Acc. Chem. Res., 42, 1669, 10.1021/ar900123t de Jongh, 2007, Inter- and intramolecular electron transfer in modified azurin dimers, Eur. J. Inorg. Chem., 18, 2627, 10.1002/ejic.200601234 DiBilio, 1997, Reorganization energy of blue copper: effects of temperature and driving force on the rates of electron transfer in ruthenium- and osmium-modified azurins, J. A. Chem. Soc., 119, 9921, 10.1021/ja971518e Farver, 1989, Long-range intramolecular electron-transfer in azurins, Proc. Natl. Acad. Sci. U. S. A., 86, 6968, 10.1073/pnas.86.18.6968 Farver, 1992, Long-range intramolecular electron-transfer in azurins, J. Am. Chem. Soc., 114, 5764, 10.1021/ja00040a043 Farver, 1992, Low activation barriers characterize intramolecular electron transfer in ascorbate oxidase, Proc. Natl. Acad. Sci. U.S.A., 89, 8283, 10.1073/pnas.89.17.8283 Farver, 1992, The effect of driving force on intramolecular electron-transfer in proteins – studies on single-site mutated azurins, Eur. J. Biochem., 210, 399, 10.1111/j.1432-1033.1992.tb17434.x Farver, 1993, Intramolecular electron-transfer in single-site-mutated azurins, Biochemistry, 32, 7317, 10.1021/bi00079a031 Farver, 1996, Structure-function correlation of intramolecular electron transfer in wild type and single-site mutated azurins, Chem. Phys., 204, 271, 10.1016/0301-0104(95)00294-4 Farver, 1996, The pH dependence of intramolecular electron transfer in azurins, Inorg. Chim. Acta, 243, 127, 10.1016/0020-1693(95)04899-5 Farver, 1997, Aromatic residues may enhance intramolecular electron transfer in azurin, J. Am. Chem. Soc., 119, 5453, 10.1021/ja964386i Farver, 1998, The intramolecular electron transfer between copper sites of nitrite reductase: a comparison with ascorbate oxidase, FEBS Lett., 436, 239, 10.1016/S0014-5793(98)01120-X Farver, 1999, Enhanced rate of intramolecular electron transfer in an engineered purple CuA azurin, Proc. Natl. Acad. Sci. U. S. A., 96, 899, 10.1073/pnas.96.3.899 Farver, 2000, Role of ligand substitution on long-range electron transfer in azurins, Eur. J. Biochem., 267, 3123, 10.1046/j.1432-1327.2000.01317.x Farver, 2000, Electron transfer rates and equilibrium within cytochrome c oxidase, Eur. J. Biochem., 267, 950, 10.1046/j.1432-1327.2000.01072.x Farver, 2002, Intramolecular electron transfer in cytochrome cd1 nitrite reductase from Pseudomonas stutzeri; kinetics and thermodynamics, Biophys. Chem., 98, 27, 10.1016/S0301-4622(02)00082-0 Farver, 2003, Intramolecular electron transfer in a covalently linked mutated azurin dimer, J. Phys. Chem. A, 107, 6757, 10.1021/jp0357018 Farver, 2004, Met144a1a mutation of the copper-containing nitrite reductase from Alcaligenes xylosoxidans reverses the intramolecular electron transfer, FEBS Lett., 561, 173, 10.1016/S0014-5793(04)00171-1 Farver, 2004, Reorganization energies of the individual copper centers in dissimilatory nitrite reductases: modulation and control of internal electron transfer, J. Phys. Chem. A, 108, 9005, 10.1021/jp046206u Farver, 2006, Rates and equilibrium of CuA to heme a electron transfer in Paracoccus denitrificans cytochrome c oxidase, Biophys. J., 90, 2131, 10.1529/biophysj.105.075440 Farver, 2006, Electron transfer among the CuA, heme b- and a3-centers of Thermus thermophilus cytochrome ba3, FEBS Lett., 580, 3417, 10.1016/j.febslet.2006.05.013 Farver, 2007, Reorganization energy of the CuA center in purple azurin: impact of the mixed valence-to-trapped valence state transition, J. Phys. Chem. B, 111, 6690, 10.1021/jp0672555 Farver, 2009, Site-site interactions enhances intramolecular electron transfer in Streptomyces coelicolor laccase, J. Am. Chem. Soc., 131, 18226, 10.1021/ja908793d Farver, 2011, Intramolecular electron transfer in laccases, FEBS J., 278, 3463, 10.1111/j.1742-4658.2011.08268.x Farver, 2011, Electron transfer in blue copper proteins, Coord. Chem. Rev., 255, 757, 10.1016/j.ccr.2010.08.005 Farver, 2013, Designed azurins show lower reorganization free energies for intraprotein electron transfer, Proc. Natl. Acad. Sci. U. S. A., 110, 10536, 10.1073/pnas.1215081110 Farver, 2015, Long-range electron transfer in engineered azurins exhibits Marcus inverted region behavior, J. Phys. Chem. Lett., 6, 100, 10.1021/jz5022685 Goldberg, 1978, The reaction of “blue” copper oxidases with 02. A pulse radiolysis study, Biophys. J., 24, 371, 10.1016/S0006-3495(78)85384-3 Hart, 1970 Klapper, 1979, Applications of pulse-radiolysis to protein chemistry, Q. Rev. Biophys., 12, 465, 10.1017/S0033583500002791 Kobayashi, 1997, Pulse radiolysis studies on cytochrome cd nitrite reductase from Thiosphaera pantotropha: evidence for a fast intramolecular electron transfer from c-heme to d(1)-heme, Biochemistry, 36, 13611, 10.1021/bi971045o Komori, 2009, X-ray structure of a two-domain type laccase: a missing link in the evolution of multi-copper proteins, FEBS Lett., 583, 1189, 10.1016/j.febslet.2009.03.008 Lawton, 2009, Crystal structure of a two-domain multicopper oxidase implications for the evolution of multicopper blue proteins, J. Biol. Chem., 284, 10174, 10.1074/jbc.M900179200 Malkin, 1970, The State and function of copper in biological systems, 33, 177 Marcus, 1985, Electron transfers in chemistry and biology, Biochim. Biophys. Acta, 811, 265, 10.1016/0304-4173(85)90014-X Messerschmidt, 1989, X-ray crystal structure of the blue oxidase ascorbate oxidase from zucchini – analysis of the polypeptide fold and a model of the copper sites and ligands, J. Mol. Biol., 206, 513, 10.1016/0022-2836(89)90498-1 Messerschmidt, 1992, Refined crystal-structure of ascorbate oxidase at 1.9 angstrom resolution, J. Mol. Biol., 224, 179, 10.1016/0022-2836(92)90583-6 Messerschmidt, 1993, X-ray structures and mechanistic implications of 3 functional-derivatives of ascorbate oxidase from zucchini – reduced, peroxide and azide forms, J. Mol. Biol., 230, 997, 10.1006/jmbi.1993.1215 Meyer, 1991, Direct measurement of intramolecular electron-transfer between type-I and type-III copper centers in the multi-copper enzyme ascorbate oxidase and its type-II copper-depleted and cyanide-inhibited forms, Biochemistry, 30, 4619, 10.1021/bi00232a037 Nakamura, 2003, Novel types of two-domain multi-copper oxidases: possible missing links in the evolution, FEBS Lett., 553, 239, 10.1016/S0014-5793(03)01000-7 Nar, 1991, Crystal-structure analysis of oxidized Pseudomonas aeruginosa azurin at pH 5.5 and pH 9.0 – a pH-induced conformational transition involves a peptide-bond flip, J. Mol. Biol., 221, 765, 10.1016/0022-2836(91)80173-R Polyakov, 2009, Structure of native laccase from Trametes hirsuta at 1.8 angstrom resolution, Acta Crystallogr., Sect. D: Biol. Crystallogr., 65, 611, 10.1107/S0907444909011950 Skalova, 2011, Structure of laccase from Streptomyces coelicolor after soaking with potassium hexacyanoferrate and at an improved resolution of 2.3 angstrom, Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun., 67, 27, 10.1107/S1744309110046099 Suzuki, 1994, Pulse-radiolysis studies on nitrite reductase from Achromobacter cycloclastes iam-1013 – evidence for intramolecular electron-transfer from type-1 cu to type-2 cu, J. Am. Chem. Soc., 116, 11145, 10.1021/ja00103a035 Wherland, 2005, Intramolecular electron transfer in nitrite reductases, ChemPhysChem, 6, 1440, 10.1002/cphc.200590018