Controlling the carrier density of surface conductive diamond

Diamond and Related Materials - Tập 122 - Trang 108775 - 2022
M.W. Geis1, M.A. Hollis1, G.W. Turner1, J. Daulton1, J.O. Varghese1, K. Klyukin2, J. Wang2, B. Yildiz2, B. Zhang1
1Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA
2Massachusetts Institute of Technology, Cambridge, MA, USA

Tài liệu tham khảo

Landstrass, 1989, Resistivity of chemical vapor deposited diamond films, Appl. Phys. Lett., 55, 975, 10.1063/1.101694 Maier, 2000, Origin of surface conductivity in diamond, Phys. Rev. Lett., 85, 3472, 10.1103/PhysRevLett.85.3472 Crawford, 2021, Surface transfer doping of diamond: a review, Prog. Surf. Sci., 96, 10.1016/j.progsurf.2021.100613 Geis, 2018, Progress toward diamond power field-effect transistors, Phys. Status Solidi A, 215 Chen, 2021, Microwave diamond devices technology: field-effect transistors and modeling, Numer. Model., 3 Saha, 2021, 345-MW/cm2 2608-V NO2 p-Type doped diamond MOSFETs with an Al2O3 passivation overlayer on heteroepitaxial diamond, IEEE Electron Dev. Lett., 42, 903, 10.1109/LED.2021.3075687 Stallcup, 2001, Scanning tunneling microscopy studies of temperature-dependent etching of diamond (100) by atomic hydrogen, Phys. Rev. Lett., 86, 3368, 10.1103/PhysRevLett.86.3368 Geis, 2021, Hydrogen and deuterium termination of diamond for low surface resistance and surface step control, Diam. Relat. Mater., 118, 10.1016/j.diamond.2021.108518 Geis, 2020, Stable, low-resistance, 1.5 to 3.5 kΩ sq−1, diamond surface conduction with a mixed metal-oxide protective film, Diam. Relat. Mater., 106, 10.1016/j.diamond.2020.107819 Miccoli, 2015, The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems, J. Phys. Condens. Matter, 27, 10.1088/0953-8984/27/22/223201 Montgomery, 1971, Method for measuring electrical resistivity of anisotropic materials, J. Appl. Phys., 42, 2971, 10.1063/1.1660656 Stallcup, 2007, Formation of nanometer-size high-density pits on epitaxial diamond (100) films, Diam. Relat. Mater., 16, 1727, 10.1016/j.diamond.2007.06.001 Thoms, 1994, Adsorption and abstraction of hydrogen on polycrystalline diamond, J. Chem. Phys., 100, 8425, 10.1063/1.466740 Koleske, 1995, Hydrogen on polycrystalline diamond films: studies of isothermal desorption and atomic deuterium abstraction, J. Chem. Phys., 102, 992, 10.1063/1.469167 Yu, 2004, Ab initio structural characterization of a hydrogen-covered diamond (001) surface, Phys. Rev. B, 70, 10.1103/PhysRevB.70.125423 Boland, 1992, Role of bond-strain in the chemistry of hydrogen on the Si (100) surface, Surf. Sci., 261, 17, 10.1016/0039-6028(92)90214-Q Boland, 1993, Scanning tunnelling microscopy of the interaction of hydrogen with silicon surfaces, Adv. Phys., 42, 129, 10.1080/00018739300101474 Waltenburg, 1995, Surface chemistry of silicon, Chem. Rev., 95, 1589, 10.1021/cr00037a600 Lin, 2005, Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs, Appl. Phys. Lett., 87, 10.1063/1.2120904 Imanishi, 2019, 3.8 W/mm RF power density for ALD Al2O3-based two-dimensional hole gas diamond MOSFET operating at saturation velocity, IEEE Electron Device Lett., 40, 279, 10.1109/LED.2018.2886596 Tsao, 2018, Ultrawide-bandgap semiconductors: research opportunities and challenges, Adv. Electron. Mater., 4, 10.1002/aelm.201600501 Ko, 2017, High-temperature carrier density and mobility enhancements in AlGaN/GaN HEMT using AlN spacer layer, J. Crystal Growth, 464, 175, 10.1016/j.jcrysgro.2016.12.023 Tordjman, 2017, Boosting surface charge-transfer doping efficiency and robustness of diamond with WO3 and ReO3, Appl. Phys. Lett., 111, 10.1063/1.4986339 Sasama, 2021 Verona, 2018, Influence of surface crystal-orientation on transfer doping of V2O5/H-terminated diamond, Appl. Phys. Lett., 112, 10.1063/1.5027198 Thorns, 1994, A vibrational study of the adsorption and desorption of hydrogen on polycrystalline diamond, J. Appl. Phys., 75, 1804, 10.1063/1.356373 Mantel, 2001, The correlation between surface conductivity and adsorbate coverage on diamond as studied by infrared spectroscopy, Diam. Relat. Mater., 10, 429, 10.1016/S0925-9635(00)00601-4