Controlling the carrier density of surface conductive diamond
Tài liệu tham khảo
Landstrass, 1989, Resistivity of chemical vapor deposited diamond films, Appl. Phys. Lett., 55, 975, 10.1063/1.101694
Maier, 2000, Origin of surface conductivity in diamond, Phys. Rev. Lett., 85, 3472, 10.1103/PhysRevLett.85.3472
Crawford, 2021, Surface transfer doping of diamond: a review, Prog. Surf. Sci., 96, 10.1016/j.progsurf.2021.100613
Geis, 2018, Progress toward diamond power field-effect transistors, Phys. Status Solidi A, 215
Chen, 2021, Microwave diamond devices technology: field-effect transistors and modeling, Numer. Model., 3
Saha, 2021, 345-MW/cm2 2608-V NO2 p-Type doped diamond MOSFETs with an Al2O3 passivation overlayer on heteroepitaxial diamond, IEEE Electron Dev. Lett., 42, 903, 10.1109/LED.2021.3075687
Stallcup, 2001, Scanning tunneling microscopy studies of temperature-dependent etching of diamond (100) by atomic hydrogen, Phys. Rev. Lett., 86, 3368, 10.1103/PhysRevLett.86.3368
Geis, 2021, Hydrogen and deuterium termination of diamond for low surface resistance and surface step control, Diam. Relat. Mater., 118, 10.1016/j.diamond.2021.108518
Geis, 2020, Stable, low-resistance, 1.5 to 3.5 kΩ sq−1, diamond surface conduction with a mixed metal-oxide protective film, Diam. Relat. Mater., 106, 10.1016/j.diamond.2020.107819
Miccoli, 2015, The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems, J. Phys. Condens. Matter, 27, 10.1088/0953-8984/27/22/223201
Montgomery, 1971, Method for measuring electrical resistivity of anisotropic materials, J. Appl. Phys., 42, 2971, 10.1063/1.1660656
Stallcup, 2007, Formation of nanometer-size high-density pits on epitaxial diamond (100) films, Diam. Relat. Mater., 16, 1727, 10.1016/j.diamond.2007.06.001
Thoms, 1994, Adsorption and abstraction of hydrogen on polycrystalline diamond, J. Chem. Phys., 100, 8425, 10.1063/1.466740
Koleske, 1995, Hydrogen on polycrystalline diamond films: studies of isothermal desorption and atomic deuterium abstraction, J. Chem. Phys., 102, 992, 10.1063/1.469167
Yu, 2004, Ab initio structural characterization of a hydrogen-covered diamond (001) surface, Phys. Rev. B, 70, 10.1103/PhysRevB.70.125423
Boland, 1992, Role of bond-strain in the chemistry of hydrogen on the Si (100) surface, Surf. Sci., 261, 17, 10.1016/0039-6028(92)90214-Q
Boland, 1993, Scanning tunnelling microscopy of the interaction of hydrogen with silicon surfaces, Adv. Phys., 42, 129, 10.1080/00018739300101474
Waltenburg, 1995, Surface chemistry of silicon, Chem. Rev., 95, 1589, 10.1021/cr00037a600
Lin, 2005, Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs, Appl. Phys. Lett., 87, 10.1063/1.2120904
Imanishi, 2019, 3.8 W/mm RF power density for ALD Al2O3-based two-dimensional hole gas diamond MOSFET operating at saturation velocity, IEEE Electron Device Lett., 40, 279, 10.1109/LED.2018.2886596
Tsao, 2018, Ultrawide-bandgap semiconductors: research opportunities and challenges, Adv. Electron. Mater., 4, 10.1002/aelm.201600501
Ko, 2017, High-temperature carrier density and mobility enhancements in AlGaN/GaN HEMT using AlN spacer layer, J. Crystal Growth, 464, 175, 10.1016/j.jcrysgro.2016.12.023
Tordjman, 2017, Boosting surface charge-transfer doping efficiency and robustness of diamond with WO3 and ReO3, Appl. Phys. Lett., 111, 10.1063/1.4986339
Sasama, 2021
Verona, 2018, Influence of surface crystal-orientation on transfer doping of V2O5/H-terminated diamond, Appl. Phys. Lett., 112, 10.1063/1.5027198
Thorns, 1994, A vibrational study of the adsorption and desorption of hydrogen on polycrystalline diamond, J. Appl. Phys., 75, 1804, 10.1063/1.356373
Mantel, 2001, The correlation between surface conductivity and adsorbate coverage on diamond as studied by infrared spectroscopy, Diam. Relat. Mater., 10, 429, 10.1016/S0925-9635(00)00601-4