Controlling quarter car suspension system by proportional derivative and positive position feedback controllers with time delay

Journal of Vibroengineering - Tập 19 Số 7 - Trang 5374-5387 - 2017
H. M. Abdelhafez1, Osama M. Omara1
1Menouf Faculty of Electronic Engineering-Menoufia University, Menouf 32952, Egypt

Tóm tắt

The active car suspension system is presented here to suppress the vibration of the car by applying proportional derivative (PD) and positive position feedback (PPF) controllers with time delay. The control signal output of the controller is applied electrically to the magneto-rheological (MR) damper or Electrical-rheological (ER) damper which is attached parallel to the passive components to improve the suppression of the vibration. The electrical control signal is produced by electronic circuits or programmable logic controller and the two-position sensor feedback signal which are connected to the controller. The approximate solutions of PD and PPF suspension systems are obtained by applying multiple time scales perturbation method. The effects of parameters variation of both the system and the controllers are investigated to achieve the best performance. Simulation results show good performance of the designed controllers.

Từ khóa


Tài liệu tham khảo

<b>Siewe Siewe M.</b> Resonance, stability and period-doubling bifurcation of a quarter-car model excited by the road surface profile. Physics Letters A, Vol. 374, 2010, p. 1469-1476.

<b>Claudiu Valentin Suciu, Tsubasa Tobiishi, Ryouta Mouri </b>Modeling and simulation of a vehicle suspension with variable damping versus the excitation frequency. Journal of Telecommunications and Information Technology, Vol. 1, 2012, p. 83-89.

<b>Paschedag T., Giua A., Seatzu C.</b> Constrained optimal control: an application to semiactive suspension systems. International Journal of Systems Science, Vol. 41, Issue 7, 2015, p. 797-811.

<b>Göhrle C., Schindler A., Wagner A., Sawodny O.</b> Design and vehicle implementation of preview active suspension controllers. IEEE Transactions on Control Systems Technology, Vol. 22, Issue 3, 2014, p. 1135-1142.

<b>Ranjbar-Sahraie B., Soltani M., Roopaie M.</b> Control of active suspension system: an interval Type-2 fuzzy approach. World Applied Sciences Journal, Vol. 12, Issue 12, 2011, p. 2218-2228.

<b>Paschedag T., Giua A., Seatzu C. </b>Constrained optimal control: an application to semi active suspension systems. International Journal of Systems Science, Vol. 41, Issue 7, 2010, p. 797-811.

<b>Han S. Y., Tang G. Y., Chen Y. H., Yang X. X., Yang X. </b>Optimal vibration control for vehicle active suspension discrete-time systems with actuator time delay. Asian Journal of Control, Vol. 15, Issue 6, 2013, p. 1579-1588.

<b>Zhang Jing, Wang Jue</b> Adaptive tracking control of vehicle suspensions with actuator saturations. 34th Chinese Control Conference, 2015, p. 8051-8056.

<b>Wu J. L. </b>A simulations mixed LQR/H∞ control approach to the design of reliable active suspension controllers. Asian Journal of Control, Vol. 19, Issue 2, 2017, p. 415-427.

<b>Orukpe P. E., Zheng X., Jaimoukha I. M., Zolotas A. C., Goodall R. M. </b>Model predictive control based on mixed H2/H∞ control approach for active vibration control of railway vehicles. Vehicle System Dynamics, Vol. 46, 2008, p. 151-160.

<b>Al-Holou N., Lahdhiri T., Joo D. S., Weaver J., Al-Abbas F.</b> Sliding mode neural network inference fuzzy logic control for active suspension systems. IEEE Transactions on Fuzzy Systems, Vol. 10, Issue 2, 2002, p. 234-246.

<b>Ahmed Abd El-Nasser S., Ali Ahmed S., Ghazaly Nouby M., El-Jaber Abd G. T. </b>PID controller of active suspension system for a quarter car model. International Journal of Advances in Engineering and Technology, Vol. 8, Issue 6, 2015, p. 899-909.

<b>Ervin Alvarez-Sánchez</b> A quarter-car suspension system: car body mass estimator and sliding mode control. Iberoamerican Conference on Electronics Engineering and Computer Science, Procedia Technology, Vol. 7, 2013, p. 208-214.

<b>Sariman M. Z., Hafiz Harun M., Mat Yamin A. K., Ahmad F., Yunos M. R. </b>Magneto rheological fluid engine mounts: a review on structure design of semi active engine mounting. International Journal of Materials, Vol. 2, 2015, p. 6-16.

<b>Palanisamy Senthilkumar, Karuppan Sivakumar </b>Fuzzy control of active suspension system. Journal of Vibroengineering, Vol. 18, Issue 5, 2016, p. 3197-3204.

<b>Shan J., Liu H., Sun D. </b>Slewing and vibration control of a single-link flexible manipulator by positive position feedback (PPF). Mechatronics, Vol. 15, 2005, p. 487-503.

<b>Creasy M. A., Leo D. J., Farinholt K. M. </b>Adaptive positive position feedback for actively absorbing energy in acoustic cavities. Journal of Sound and Vibration, Vol. 311, 2008, p. 461-472.

<b>Baz A., Hong J. </b>Adaptive control of flexible structures using modal positive position feedback. International Journal of Adaptive Control and Signal Processing, Vol. 11, 1997, p. 231-253.

<b>Baz A., Poh S. </b>Short communications optimal vibration control with modal positive position feedback. Optimal Control Applications and Methods, Vol. 17, 1996, p. 141-149.

<b>Ahamed B., Pota H. R. </b>Dynamic compensation for control of a rotary wing UAV using positive position feedback. Journal of Intelligent and Robotic Systems, Vol. 61, 2011, p. 43-56.

<b>Nayfeh A., Mook D. </b>Nonlinear Oscillations. Wiley, New York, 1995.