Controlling quarter car suspension system by proportional derivative and positive position feedback controllers with time delay
Tóm tắt
Từ khóa
Tài liệu tham khảo
<b>Siewe Siewe M.</b> Resonance, stability and period-doubling bifurcation of a quarter-car model excited by the road surface profile. Physics Letters A, Vol. 374, 2010, p. 1469-1476.
<b>Claudiu Valentin Suciu, Tsubasa Tobiishi, Ryouta Mouri </b>Modeling and simulation of a vehicle suspension with variable damping versus the excitation frequency. Journal of Telecommunications and Information Technology, Vol. 1, 2012, p. 83-89.
<b>Paschedag T., Giua A., Seatzu C.</b> Constrained optimal control: an application to semiactive suspension systems. International Journal of Systems Science, Vol. 41, Issue 7, 2015, p. 797-811.
<b>Göhrle C., Schindler A., Wagner A., Sawodny O.</b> Design and vehicle implementation of preview active suspension controllers. IEEE Transactions on Control Systems Technology, Vol. 22, Issue 3, 2014, p. 1135-1142.
<b>Ranjbar-Sahraie B., Soltani M., Roopaie M.</b> Control of active suspension system: an interval Type-2 fuzzy approach. World Applied Sciences Journal, Vol. 12, Issue 12, 2011, p. 2218-2228.
<b>Paschedag T., Giua A., Seatzu C. </b>Constrained optimal control: an application to semi active suspension systems. International Journal of Systems Science, Vol. 41, Issue 7, 2010, p. 797-811.
<b>Han S. Y., Tang G. Y., Chen Y. H., Yang X. X., Yang X. </b>Optimal vibration control for vehicle active suspension discrete-time systems with actuator time delay. Asian Journal of Control, Vol. 15, Issue 6, 2013, p. 1579-1588.
<b>Zhang Jing, Wang Jue</b> Adaptive tracking control of vehicle suspensions with actuator saturations. 34th Chinese Control Conference, 2015, p. 8051-8056.
<b>Wu J. L. </b>A simulations mixed LQR/H∞ control approach to the design of reliable active suspension controllers. Asian Journal of Control, Vol. 19, Issue 2, 2017, p. 415-427.
<b>Orukpe P. E., Zheng X., Jaimoukha I. M., Zolotas A. C., Goodall R. M. </b>Model predictive control based on mixed H2/H∞ control approach for active vibration control of railway vehicles. Vehicle System Dynamics, Vol. 46, 2008, p. 151-160.
<b>Al-Holou N., Lahdhiri T., Joo D. S., Weaver J., Al-Abbas F.</b> Sliding mode neural network inference fuzzy logic control for active suspension systems. IEEE Transactions on Fuzzy Systems, Vol. 10, Issue 2, 2002, p. 234-246.
<b>Ahmed Abd El-Nasser S., Ali Ahmed S., Ghazaly Nouby M., El-Jaber Abd G. T. </b>PID controller of active suspension system for a quarter car model. International Journal of Advances in Engineering and Technology, Vol. 8, Issue 6, 2015, p. 899-909.
<b>Ervin Alvarez-Sánchez</b> A quarter-car suspension system: car body mass estimator and sliding mode control. Iberoamerican Conference on Electronics Engineering and Computer Science, Procedia Technology, Vol. 7, 2013, p. 208-214.
<b>Sariman M. Z., Hafiz Harun M., Mat Yamin A. K., Ahmad F., Yunos M. R. </b>Magneto rheological fluid engine mounts: a review on structure design of semi active engine mounting. International Journal of Materials, Vol. 2, 2015, p. 6-16.
<b>Palanisamy Senthilkumar, Karuppan Sivakumar </b>Fuzzy control of active suspension system. Journal of Vibroengineering, Vol. 18, Issue 5, 2016, p. 3197-3204.
<b>Shan J., Liu H., Sun D. </b>Slewing and vibration control of a single-link flexible manipulator by positive position feedback (PPF). Mechatronics, Vol. 15, 2005, p. 487-503.
<b>Creasy M. A., Leo D. J., Farinholt K. M. </b>Adaptive positive position feedback for actively absorbing energy in acoustic cavities. Journal of Sound and Vibration, Vol. 311, 2008, p. 461-472.
<b>Baz A., Hong J. </b>Adaptive control of flexible structures using modal positive position feedback. International Journal of Adaptive Control and Signal Processing, Vol. 11, 1997, p. 231-253.
<b>Baz A., Poh S. </b>Short communications optimal vibration control with modal positive position feedback. Optimal Control Applications and Methods, Vol. 17, 1996, p. 141-149.
<b>Ahamed B., Pota H. R. </b>Dynamic compensation for control of a rotary wing UAV using positive position feedback. Journal of Intelligent and Robotic Systems, Vol. 61, 2011, p. 43-56.