Controlling metabolic flux by toehold-mediated strand displacement
Tài liệu tham khảo
Woolston, 2013, Metabolic engineering: past and future, Annu Rev Chem Biomol Eng, 4, 259, 10.1146/annurev-chembioeng-061312-103312
Brockman, 2015, Dynamic metabolic engineering: new strategies for developing responsive cell factories, Biotechnol J, 10, 1360, 10.1002/biot.201400422
Siu, 2015, Synthetic scaffolds for pathway enhancement, Curr Opin Biotechnol, 36, 98, 10.1016/j.copbio.2015.08.009
Kim, 2018, Molecular parts and genetic circuits for metabolic engineering of microorganisms, FEMS Microbiol Lett, 365, 1, 10.1093/femsle/fny187
Hong, 2017, DNA origami: scaffolds for creating higher order structures, Chem Rev, 117, 12584, 10.1021/acs.chemrev.6b00825
Zhang, 2011, Dynamic DNA nanotechnology using strand-displacement reactions, Nat Chem, 3, 103, 10.1038/nchem.957
Chen, 2015, DNA nanotechnology from the test tube to the cell, Nat Nanotechnol, 10, 748, 10.1038/nnano.2015.195
Zhang, 2009, Control of DNA strand displacement kinetics using toehold exchange, J Am Chem Soc, 131, 17303, 10.1021/ja906987s
Seelig, 2006, Enzyme-free nucleic acid logic circuits, Science, 314, 1585, 10.1126/science.1132493
Yin, 2008, Programming biomolecular self-assembly pathways, Nature, 451, 318, 10.1038/nature06451
Qian, 2011, Scaling up digital circuit computation with DNA strand displacement cascades, Science, 332, 1196, 10.1126/science.1200520
Zhang, 2013, Integrating DNA strand-displacement circuitry with DNA tile self-assembly, Nat Commun, 4, 1
Yurke, 2000, A DNA-fueled molecular machine made of DNA, Nature, 406, 605, 10.1038/35020524
Douglas, 2012, A logic-gated nanorobot for targeted transport of molecular payloads, Science, 335, 831, 10.1126/science.1214081
Chappell, 2015, Creating small transcription activating RNAs, Nat Chem Biol, 11, 214, 10.1038/nchembio.1737
Westbrook, 2017, Achieving large dynamic range control of gene expression with a compact RNA transcription-translation regulator, Nucleic Acids Res, 45, 5614, 10.1093/nar/gkx215
Chappell, 2017, Computational design of small transcription activating RNAs for versatile and dynamic gene regulation, Nat Commun, 8, 1, 10.1038/s41467-017-01082-6
Gilbert, 2014, Genome-scale CRISPR-mediated control of gene repression and activation, Cell, 159, 647, 10.1016/j.cell.2014.09.029
Briner, 2014, Guide RNA functional modules direct Cas9 activity and orthogonality, Mol Cell, 56, 333, 10.1016/j.molcel.2014.09.019
Tang, 2017, Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation, Nat Commun, 8, 10.1038/ncomms15939
Anzalone, 2019, Search-and-replace genome editing without double-strand breaks or donor DNA, Nature, 576, 149, 10.1038/s41586-019-1711-4
Jin, 2019, Programmable CRISPR-Cas repression, activation, and computation with sequence-independent targets and triggers, ACS Synth Biol, 8, 1583, 10.1021/acssynbio.9b00141
Li, 2019, RNA strand displacement responsive CRISPR/Cas9 system for mRNA sensing, Anal Chem, 91, 3989, 10.1021/acs.analchem.8b05238
Hanewich-Hollatz, 2019, Conditional guide RNAs: programmable conditional regulation of CRISPR/Cas function in bacterial and mammalian cells via dynamic RNA nanotechnology, ACS Cent Sci, 5, 1241, 10.1021/acscentsci.9b00340
Oesinghaus, 2019, Switching the activity of Cas12a using guide RNA strand displacement circuits, Nat Commun, 10, 1, 10.1038/s41467-019-09953-w
Siu, 2019, Riboregulated toehold-gated gRNA for programmable CRISPR–Cas9 function, Nat Chem Biol, 15, 217, 10.1038/s41589-018-0186-1
Green, 2014, Toehold switches: de-novo-designed regulators of gene expression, Cell, 159, 925, 10.1016/j.cell.2014.10.002
Green, 2017, Complex cellular logic computation using ribocomputing devices, Nature, 548, 117, 10.1038/nature23271
Kim, 2019, De novo-designed translation-repressing riboregulators for multi-input cellular logic, Nat Chem Biol, 15, 1173, 10.1038/s41589-019-0388-1
Xin, 2013, Regulation of an enzyme cascade reaction by a DNA machine, Small, 9, 3088, 10.1002/smll.201300019
Liu, 2013, A DNA tweezer-actuated enzyme nanoreactor, Nat Commun, 4, 1
Dhakal, 2016, Rational design of DNA-actuated enzyme nanoreactors guided by single molecule analysis, Nanoscale, 8, 3125, 10.1039/C5NR07263H
Chen, 2018, Dynamic protein assembly by programmable DNA strand displacement, Nat Chem, 10, 474, 10.1038/s41557-018-0016-9
Berckman, 2019, Exploiting dCas9 fusion proteins for dynamic assembly of synthetic metabolons, Chem Commun, 55, 8219, 10.1039/C9CC04002A
Wang, 2016, A switchable DNA origami nanochannel for regulating molecular transport at the nanometer scale, Nanoscale, 8, 3944, 10.1039/C5NR08206D
Ke, 2016, Directional regulation of enzyme pathways through the control of substrate channeling on a DNA origami scaffold, Angew Chem Int Ed, 55, 7483, 10.1002/anie.201603183
Zhou, 2018, Flexible assembly of an enzyme cascade on a DNA triangle prism nanostructure for the controlled biomimetic generation of nitric oxide, ChemBioChem, 19, 2099, 10.1002/cbic.201800337
Afonin, 2016, The use of minimal RNA toeholds to trigger the activation of multiple functionalities, Nano Lett, 16, 1746, 10.1021/acs.nanolett.5b04676
Weizmann, 2017, RNA nanotechnology - the knots and folds of RNA nanoparticle engineering, MRS Bull, 42, 930, 10.1557/mrs.2017.277