Controlling electrical and optical properties of zinc oxide thin films grown by thermal atomic layer deposition with oxygen gas

Results in Materials - Tập 6 - Trang 100088 - 2020
Tai Nguyen1,2, Noureddine Adjeroud1, Mael Guennou2, Jérôme Guillot1, Yves Fleming1, Anne-Marie Papon3, Didier Arl1, Kevin Menguelti1, Raoul Joly1,2, Narciso Gambacorti3, Jérôme Polesel-Maris1
1Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux, Luxembourg
2Physics and Materials Science Research Unit, University of Luxembourg, Campus Limpertsberg, 162 Avenue de La Faïencerie, L-1511, Luxembourg
3Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France

Tài liệu tham khảo

Özgür, 2005, A comprehensive review of ZnO materials and devices, J. Appl. Phys., 98, 10.1063/1.1992666 Jin, 2000, Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 71, 301, 10.1016/S0921-5107(99)00395-5 Service, 1997, Will UV lasers beat the blues?, Science, 276, 10.1126/science.276.5314.895 Yuan, 2013, A ZnO thin-film driven microcantilever for nanoscale actuation and sensing, Int. J. Smart Nano Mater., 4, 128, 10.1080/19475411.2012.749959 Choi, 2010, Recent advances in ZnO-based light-emitting diodes, IEEE Trans. Electron. Dev., 57, 26, 10.1109/TED.2009.2033769 Nayak, 2009, Spin-coated Ga-doped ZnO transparent conducting thin films for organic light-emitting diodes, J. Phys. D Appl. Phys., 42, 10.1088/0022-3727/42/3/035102 Mane, 2005, Nanocrystalline TiO2/ZnO thin films: fabrication and application to dye-sensitized solar cells, J. Phys. Chem. B, 109, 24254, 10.1021/jp0531560 Van Dang, 2016, Chlorine gas sensing performance of on-chip grown ZnO, WO3, and SnO2 nanowire sensors, ACS Appl. Mater. Interfaces, 8, 4828, 10.1021/acsami.5b08638 Khoang, 2012, Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance, Sensor. Actuator. B Chem., 174, 594, 10.1016/j.snb.2012.07.118 Le Brizoual, 2008, GHz frequency ZnO/Si SAW device, IEEE Trans. Ultrason. Ferroelectrics Freq. Contr., 55, 442, 10.1109/TUFFC.2008.662 Wang, 2008, Piezoelectric nanogenerators for self-powered nanodevices, IEEE Pervasive Comput, 7, 49, 10.1109/MPRV.2008.14 Wang, 2006, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science, 312, 242, 10.1126/science.1124005 Briscoe, 2014, Piezoelectric nanogenerators - a review of nanostructured piezoelectric energy harvesters, Nanomater. Energy, 14, 15, 10.1016/j.nanoen.2014.11.059 Hinchet, 2014, Performance optimization of vertical nanowire-based piezoelectric nanogenerators, Adv. Funct. Mater., 24, 971, 10.1002/adfm.201302157 Liu, 2013, ZnO-based transparent conductive thin films: doping, performance, and processing, J. Nanomater., 2013, 196521 Wang, 2013, Nonpolar light emitting diodes of m-plane ZnO on c-plane GaN with the Al2O3 interlayer, Appl. Phys. Lett., 102, 141912, 10.1063/1.4801761 Loh, 2011, Zinc oxide nanoparticle-polymeric thin films for dynamic strain sensing, J. Mater. Sci., 46, 228, 10.1007/s10853-010-4940-3 Wu, 2016, Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics, Nat. Rev. Mater., 1, 16031, 10.1038/natrevmats.2016.31 Wang, 2010, Piezopotential gated nanowire devices: piezotronics and piezo-phototronics, Nano Today, 5, 540, 10.1016/j.nantod.2010.10.008 Wang, 2014, Piezotronics and piezo-phototronics: fundamentals and applications, Natl. Sci. Rev., 1, 62, 10.1093/nsr/nwt002 Wang, 2012, Progress in piezotronics and piezo-phototronics, Adv. Mater., 24, 4632, 10.1002/adma.201104365 Wang, 2015, Nanogenerators and piezotronics, Nanomater. Energy, 14, 1, 10.1016/j.nanoen.2015.01.011 Wang, 2015, ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance, Rev. Sci. Instrum., 86, 10.1063/1.4923456 Miura, 1982, Crystallographic character of ZnO thin film formed at low sputtering gas pressure, Jpn. J. Appl. Phys., 21, 264, 10.1143/JJAP.21.264 Fujimura, 1993, Control of preferred orientation for ZnOx films: control of self-texture, J. Cryst. Growth, 130, 269, 10.1016/0022-0248(93)90861-P Shan, 2004, Substrate effects of ZnO thin films prepared by PLD technique, J. Eur. Ceram. Soc., 24, 1015, 10.1016/S0955-2219(03)00397-2 Chao, 2016, Investigations on the crystallographic orientation induced surface morphology evolution of ZnO thin films and their wettability and conductivity, J. Phys. Chem. C, 120, 8210, 10.1021/acs.jpcc.6b01573 Pung, 2008, Preferential growth of ZnO thin films by the atomic layer deposition technique, Nanotechnology, 19, 435609, 10.1088/0957-4484/19/43/435609 Krajewski, 2014, Dominant shallow donors in zinc oxide layers obtained by low-temperature atomic layer deposition: electrical and optical investigations, Acta Mater., 65, 69, 10.1016/j.actamat.2013.11.054 Thomas, 2012, Highly tunable electrical properties in undoped ZnO grown by plasma enhanced thermal-atomic layer deposition, ACS Appl. Mater. Interfaces, 4, 3122, 10.1021/am300458q Huang, 2017, Fermi level tuning of ZnO films through supercycled atomic layer deposition, Nanoscale Res. Lett., 12, 541, 10.1186/s11671-017-2308-1 Park, 2004, Controlling preferred orientation of ZnO thin films by atomic layer deposition, J. Mater. Sci., 39, 2195, 10.1023/B:JMSC.0000017786.81842.ae Bachmann, 2010, Texture analysis with MTEX – free and open source software toolbox, Solid State Phenom., 160, 63, 10.4028/www.scientific.net/SSP.160.63 Harris, 1952, Quantitative measurement of preferred orientation in rolled uranium bars, London, Edinburgh, Dublin Philos. Mag. J. Sci., 43, 113, 10.1080/14786440108520972 Moutinho, 1995, Investigation of polycrystalline CdTe thin films deposited by physical vapor deposition, close-spaced sublimation, and sputtering, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 13, 2877, 10.1116/1.579607 Hielscher, 2007, On the entropy to texture index relationship in quantitative texture analysis, J. Appl. Crystallogr., 40, 371, 10.1107/S0021889806055476 Saleem, 2012, Simple preparation and characterization of nano-crystalline zinc oxide thin films by sol-gel method on glass substrate, World J. Condens. Matter Phys., 2, 10, 10.4236/wjcmp.2012.21002 Ismail, 2013, The structural and optical properties of ZnO thin films prepared at different RF sputtering power, J. King Saud Univ. Sci., 25, 209, 10.1016/j.jksus.2012.12.004 Ye, 2013, Structural, electrical, and optical properties of Ti-doped ZnO films fabricated by atomic layer deposition, Nanoscale Res. Lett., 8, 108, 10.1186/1556-276X-8-108 Haarindraprasad, 2015, Low temperature annealed zinc oxide nanostructured thin film-based transducers: characterization for sensing applications, PloS One, 10.1371/journal.pone.0132755 Abdulrahman, 2017, Effect of the growth time on the optical properties of ZnO nanorods grown by low temperature method, Dig. J. Nanomater. Biostructures., 12, 1001 Viezbicke, 2015, Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system, Phys. Status Solidi Basic Res., 252, 1700, 10.1002/pssb.201552007 Lupan, 2010, Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium, Appl. Surf. Sci., 256, 1895, 10.1016/j.apsusc.2009.10.032 Tak, 2006, Characterization of ZnO nanorod arrays fabricated on Si wafers using a low-temperature synthesis method, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 24, 2047, 10.1116/1.2216714 Bang, 2011, The effects of post-annealing on the performance of ZnO thin film transistors, Thin Solid Films, 519, 8109, 10.1016/j.tsf.2011.05.048 Kim, 1999, Trapped oxygen in the grain boundaries of ZnO polycrystalline thin films prepared by plasma-enhanced chemical vapor deposition, Mater. Lett., 41, 159, 10.1016/S0167-577X(99)00124-X Guziewicz, 2012, ALD grown zinc oxide with controllable electrical properties, Semicond, Sci. Technol., 27 Sun, 2012, Metal oxide nanostructures and their gas sensing properties: a review, Sensors, 41, 159 Ellmer, 2001, Resistivity of polycrystalline zinc oxide films: current status and physical limit, J. Phys. D Appl. Phys., 34, 3097, 10.1088/0022-3727/34/21/301 Fanni, 2014, c-texture versus a-texture low pressure metalorganic chemical vapor deposition ZnO films: lower resistivity despite smaller grain size, Thin Solid Films, 565, 1, 10.1016/j.tsf.2014.06.033 Steinhauser, 2007, Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films, Appl. Phys. Lett., 90, 142107, 10.1063/1.2719158 Werner, 2017, Hall measurements on low-mobility thin films, J. Appl. Phys., 122, 135306, 10.1063/1.4990470 Bjørheim, 2014, Ab initio thermodynamics of oxygen vacancies and zinc interstitials in ZnO, J. Phys. Chem. Lett., 5, 4238, 10.1021/jz5018812 Orton, 1980, The hall effect in polycrystalline and powdered semiconductors, Rep. Prog. Phys., 43, 1263, 10.1088/0034-4885/43/11/001 Greuter, 1990, Electrical properties of grain boundaries in polycrystalline compound semiconductors, Semicond. Sci. Technol., 5, 111, 10.1088/0268-1242/5/2/001 Barsan, 2001, Conduction model of metal oxide gas sensors, J. Electroceram., 7, 143, 10.1023/A:1014405811371 Varpula, 2010, Modelling of dc characteristics for granular semiconductors, Phys. Scr., T, T141, 10.1088/0031-8949/2010/T141/014003 Gorai, 2016, Mechanism and energetics of O and O2 adsorption on polar and non-polar ZnO surfaces, J. Chem. Phys., 144, 184708, 10.1063/1.4948939 Göpel, 2002, Reactions of oxygen with ZnO–101̄0-surfaces, J. Vac. Sci. Technol., 15, 1298, 10.1116/1.569757 Djurišić, 2007, Defect emissions in ZnO nanostructures, Nanotechnology, 18, 10.1088/0957-4484/18/9/095702 Panigrahy, 2010, Defect-related emissions and magnetization properties of ZnO Nanorods, Adv. Funct. Mater., 20, 1161, 10.1002/adfm.200902018 Morkoç, 2009 Jin, 2000, Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition, Thin Solid Films, 366, 107, 10.1016/S0040-6090(00)00746-X Singh, 2014, Thickness dependence of optoelectronic properties in ALD grown ZnO thin films, Appl. Surf. Sci., 289, 27, 10.1016/j.apsusc.2013.10.071 Łukasiewicz, 2012, ZnO, ZnMnO and ZnCoO films grown by atomic layer deposition, Semicond. Sci. Technol., 27, 10.1088/0268-1242/27/7/074009 Gao, 2004, Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process, J. Phys. Chem. B, 108, 7534, 10.1021/jp049657n Rueter, 1992, The surface reactions of ethyl groups on Si(100) formed via dissociation of adsorbed diethylzinc, Surf. Sci., 262, 42, 10.1016/0039-6028(92)90458-I Dumont, 1992, Mass-spectrometric study of thermal decomposition of diethylzinc and diethyltellurium, J. Mater. Chem., 2, 923, 10.1039/JM9920200923 Fan, 1995, Homogeneous thermal decomposition of dimethylzinc in a metal-organic vapour phase epitaxy reactor, J. Chem. Soc. Faraday. Trans., 91, 3475, 10.1039/FT9959103475 Kresse, 2003, Competing stabilization mechanism for the polar ZnO(0001)-Zn surface, Phys. Rev. B Condens. Matter, 68, 1, 10.1103/PhysRevB.68.245409 Meyer, 2004, First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen, Phys. Rev. B Condens. Matter, 69, 1, 10.1103/PhysRevB.69.045416 Wahl, 2013, Stabilization mechanism for the polar ZnO(0001̄)-O surface, Phys. Rev. B Condens. Matter, 87, 1, 10.1103/PhysRevB.87.085313 Dulub, 2003, Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn, Phys. Rev. Lett., 90, 10.1103/PhysRevLett.90.016102 Bengtsson, 1999, Dipole correction for surface supercell calculations, Phys. Rev. B Condens. Matter, 59, 12301, 10.1103/PhysRevB.59.12301 Martin, 1974, Comment on calculations of electric polarization in crystals, Phys. Rev. B, 9, 1998, 10.1103/PhysRevB.9.1998