Controlling electrical and optical properties of zinc oxide thin films grown by thermal atomic layer deposition with oxygen gas
Tài liệu tham khảo
Özgür, 2005, A comprehensive review of ZnO materials and devices, J. Appl. Phys., 98, 10.1063/1.1992666
Jin, 2000, Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 71, 301, 10.1016/S0921-5107(99)00395-5
Service, 1997, Will UV lasers beat the blues?, Science, 276, 10.1126/science.276.5314.895
Yuan, 2013, A ZnO thin-film driven microcantilever for nanoscale actuation and sensing, Int. J. Smart Nano Mater., 4, 128, 10.1080/19475411.2012.749959
Choi, 2010, Recent advances in ZnO-based light-emitting diodes, IEEE Trans. Electron. Dev., 57, 26, 10.1109/TED.2009.2033769
Nayak, 2009, Spin-coated Ga-doped ZnO transparent conducting thin films for organic light-emitting diodes, J. Phys. D Appl. Phys., 42, 10.1088/0022-3727/42/3/035102
Mane, 2005, Nanocrystalline TiO2/ZnO thin films: fabrication and application to dye-sensitized solar cells, J. Phys. Chem. B, 109, 24254, 10.1021/jp0531560
Van Dang, 2016, Chlorine gas sensing performance of on-chip grown ZnO, WO3, and SnO2 nanowire sensors, ACS Appl. Mater. Interfaces, 8, 4828, 10.1021/acsami.5b08638
Khoang, 2012, Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance, Sensor. Actuator. B Chem., 174, 594, 10.1016/j.snb.2012.07.118
Le Brizoual, 2008, GHz frequency ZnO/Si SAW device, IEEE Trans. Ultrason. Ferroelectrics Freq. Contr., 55, 442, 10.1109/TUFFC.2008.662
Wang, 2008, Piezoelectric nanogenerators for self-powered nanodevices, IEEE Pervasive Comput, 7, 49, 10.1109/MPRV.2008.14
Wang, 2006, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science, 312, 242, 10.1126/science.1124005
Briscoe, 2014, Piezoelectric nanogenerators - a review of nanostructured piezoelectric energy harvesters, Nanomater. Energy, 14, 15, 10.1016/j.nanoen.2014.11.059
Hinchet, 2014, Performance optimization of vertical nanowire-based piezoelectric nanogenerators, Adv. Funct. Mater., 24, 971, 10.1002/adfm.201302157
Liu, 2013, ZnO-based transparent conductive thin films: doping, performance, and processing, J. Nanomater., 2013, 196521
Wang, 2013, Nonpolar light emitting diodes of m-plane ZnO on c-plane GaN with the Al2O3 interlayer, Appl. Phys. Lett., 102, 141912, 10.1063/1.4801761
Loh, 2011, Zinc oxide nanoparticle-polymeric thin films for dynamic strain sensing, J. Mater. Sci., 46, 228, 10.1007/s10853-010-4940-3
Wu, 2016, Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics, Nat. Rev. Mater., 1, 16031, 10.1038/natrevmats.2016.31
Wang, 2010, Piezopotential gated nanowire devices: piezotronics and piezo-phototronics, Nano Today, 5, 540, 10.1016/j.nantod.2010.10.008
Wang, 2014, Piezotronics and piezo-phototronics: fundamentals and applications, Natl. Sci. Rev., 1, 62, 10.1093/nsr/nwt002
Wang, 2012, Progress in piezotronics and piezo-phototronics, Adv. Mater., 24, 4632, 10.1002/adma.201104365
Wang, 2015, Nanogenerators and piezotronics, Nanomater. Energy, 14, 1, 10.1016/j.nanoen.2015.01.011
Wang, 2015, ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance, Rev. Sci. Instrum., 86, 10.1063/1.4923456
Miura, 1982, Crystallographic character of ZnO thin film formed at low sputtering gas pressure, Jpn. J. Appl. Phys., 21, 264, 10.1143/JJAP.21.264
Fujimura, 1993, Control of preferred orientation for ZnOx films: control of self-texture, J. Cryst. Growth, 130, 269, 10.1016/0022-0248(93)90861-P
Shan, 2004, Substrate effects of ZnO thin films prepared by PLD technique, J. Eur. Ceram. Soc., 24, 1015, 10.1016/S0955-2219(03)00397-2
Chao, 2016, Investigations on the crystallographic orientation induced surface morphology evolution of ZnO thin films and their wettability and conductivity, J. Phys. Chem. C, 120, 8210, 10.1021/acs.jpcc.6b01573
Pung, 2008, Preferential growth of ZnO thin films by the atomic layer deposition technique, Nanotechnology, 19, 435609, 10.1088/0957-4484/19/43/435609
Krajewski, 2014, Dominant shallow donors in zinc oxide layers obtained by low-temperature atomic layer deposition: electrical and optical investigations, Acta Mater., 65, 69, 10.1016/j.actamat.2013.11.054
Thomas, 2012, Highly tunable electrical properties in undoped ZnO grown by plasma enhanced thermal-atomic layer deposition, ACS Appl. Mater. Interfaces, 4, 3122, 10.1021/am300458q
Huang, 2017, Fermi level tuning of ZnO films through supercycled atomic layer deposition, Nanoscale Res. Lett., 12, 541, 10.1186/s11671-017-2308-1
Park, 2004, Controlling preferred orientation of ZnO thin films by atomic layer deposition, J. Mater. Sci., 39, 2195, 10.1023/B:JMSC.0000017786.81842.ae
Bachmann, 2010, Texture analysis with MTEX – free and open source software toolbox, Solid State Phenom., 160, 63, 10.4028/www.scientific.net/SSP.160.63
Harris, 1952, Quantitative measurement of preferred orientation in rolled uranium bars, London, Edinburgh, Dublin Philos. Mag. J. Sci., 43, 113, 10.1080/14786440108520972
Moutinho, 1995, Investigation of polycrystalline CdTe thin films deposited by physical vapor deposition, close-spaced sublimation, and sputtering, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 13, 2877, 10.1116/1.579607
Hielscher, 2007, On the entropy to texture index relationship in quantitative texture analysis, J. Appl. Crystallogr., 40, 371, 10.1107/S0021889806055476
Saleem, 2012, Simple preparation and characterization of nano-crystalline zinc oxide thin films by sol-gel method on glass substrate, World J. Condens. Matter Phys., 2, 10, 10.4236/wjcmp.2012.21002
Ismail, 2013, The structural and optical properties of ZnO thin films prepared at different RF sputtering power, J. King Saud Univ. Sci., 25, 209, 10.1016/j.jksus.2012.12.004
Ye, 2013, Structural, electrical, and optical properties of Ti-doped ZnO films fabricated by atomic layer deposition, Nanoscale Res. Lett., 8, 108, 10.1186/1556-276X-8-108
Haarindraprasad, 2015, Low temperature annealed zinc oxide nanostructured thin film-based transducers: characterization for sensing applications, PloS One, 10.1371/journal.pone.0132755
Abdulrahman, 2017, Effect of the growth time on the optical properties of ZnO nanorods grown by low temperature method, Dig. J. Nanomater. Biostructures., 12, 1001
Viezbicke, 2015, Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system, Phys. Status Solidi Basic Res., 252, 1700, 10.1002/pssb.201552007
Lupan, 2010, Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium, Appl. Surf. Sci., 256, 1895, 10.1016/j.apsusc.2009.10.032
Tak, 2006, Characterization of ZnO nanorod arrays fabricated on Si wafers using a low-temperature synthesis method, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 24, 2047, 10.1116/1.2216714
Bang, 2011, The effects of post-annealing on the performance of ZnO thin film transistors, Thin Solid Films, 519, 8109, 10.1016/j.tsf.2011.05.048
Kim, 1999, Trapped oxygen in the grain boundaries of ZnO polycrystalline thin films prepared by plasma-enhanced chemical vapor deposition, Mater. Lett., 41, 159, 10.1016/S0167-577X(99)00124-X
Guziewicz, 2012, ALD grown zinc oxide with controllable electrical properties, Semicond, Sci. Technol., 27
Sun, 2012, Metal oxide nanostructures and their gas sensing properties: a review, Sensors, 41, 159
Ellmer, 2001, Resistivity of polycrystalline zinc oxide films: current status and physical limit, J. Phys. D Appl. Phys., 34, 3097, 10.1088/0022-3727/34/21/301
Fanni, 2014, c-texture versus a-texture low pressure metalorganic chemical vapor deposition ZnO films: lower resistivity despite smaller grain size, Thin Solid Films, 565, 1, 10.1016/j.tsf.2014.06.033
Steinhauser, 2007, Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films, Appl. Phys. Lett., 90, 142107, 10.1063/1.2719158
Werner, 2017, Hall measurements on low-mobility thin films, J. Appl. Phys., 122, 135306, 10.1063/1.4990470
Bjørheim, 2014, Ab initio thermodynamics of oxygen vacancies and zinc interstitials in ZnO, J. Phys. Chem. Lett., 5, 4238, 10.1021/jz5018812
Orton, 1980, The hall effect in polycrystalline and powdered semiconductors, Rep. Prog. Phys., 43, 1263, 10.1088/0034-4885/43/11/001
Greuter, 1990, Electrical properties of grain boundaries in polycrystalline compound semiconductors, Semicond. Sci. Technol., 5, 111, 10.1088/0268-1242/5/2/001
Barsan, 2001, Conduction model of metal oxide gas sensors, J. Electroceram., 7, 143, 10.1023/A:1014405811371
Varpula, 2010, Modelling of dc characteristics for granular semiconductors, Phys. Scr., T, T141, 10.1088/0031-8949/2010/T141/014003
Gorai, 2016, Mechanism and energetics of O and O2 adsorption on polar and non-polar ZnO surfaces, J. Chem. Phys., 144, 184708, 10.1063/1.4948939
Göpel, 2002, Reactions of oxygen with ZnO–101̄0-surfaces, J. Vac. Sci. Technol., 15, 1298, 10.1116/1.569757
Djurišić, 2007, Defect emissions in ZnO nanostructures, Nanotechnology, 18, 10.1088/0957-4484/18/9/095702
Panigrahy, 2010, Defect-related emissions and magnetization properties of ZnO Nanorods, Adv. Funct. Mater., 20, 1161, 10.1002/adfm.200902018
Morkoç, 2009
Jin, 2000, Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition, Thin Solid Films, 366, 107, 10.1016/S0040-6090(00)00746-X
Singh, 2014, Thickness dependence of optoelectronic properties in ALD grown ZnO thin films, Appl. Surf. Sci., 289, 27, 10.1016/j.apsusc.2013.10.071
Łukasiewicz, 2012, ZnO, ZnMnO and ZnCoO films grown by atomic layer deposition, Semicond. Sci. Technol., 27, 10.1088/0268-1242/27/7/074009
Gao, 2004, Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process, J. Phys. Chem. B, 108, 7534, 10.1021/jp049657n
Rueter, 1992, The surface reactions of ethyl groups on Si(100) formed via dissociation of adsorbed diethylzinc, Surf. Sci., 262, 42, 10.1016/0039-6028(92)90458-I
Dumont, 1992, Mass-spectrometric study of thermal decomposition of diethylzinc and diethyltellurium, J. Mater. Chem., 2, 923, 10.1039/JM9920200923
Fan, 1995, Homogeneous thermal decomposition of dimethylzinc in a metal-organic vapour phase epitaxy reactor, J. Chem. Soc. Faraday. Trans., 91, 3475, 10.1039/FT9959103475
Kresse, 2003, Competing stabilization mechanism for the polar ZnO(0001)-Zn surface, Phys. Rev. B Condens. Matter, 68, 1, 10.1103/PhysRevB.68.245409
Meyer, 2004, First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen, Phys. Rev. B Condens. Matter, 69, 1, 10.1103/PhysRevB.69.045416
Wahl, 2013, Stabilization mechanism for the polar ZnO(0001̄)-O surface, Phys. Rev. B Condens. Matter, 87, 1, 10.1103/PhysRevB.87.085313
Dulub, 2003, Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn, Phys. Rev. Lett., 90, 10.1103/PhysRevLett.90.016102
Bengtsson, 1999, Dipole correction for surface supercell calculations, Phys. Rev. B Condens. Matter, 59, 12301, 10.1103/PhysRevB.59.12301
Martin, 1974, Comment on calculations of electric polarization in crystals, Phys. Rev. B, 9, 1998, 10.1103/PhysRevB.9.1998